Skip to main content

Advertisement

Log in

Choroid plexus implants rescue Alzheimer’s disease-like pathologies by modulating amyloid-β degradation

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The choroid plexuses (CP) release numerous biologically active enzymes and neurotrophic factors, and contain a subpopulation of neural progenitor cells providing the capacity to proliferate and differentiate into other types of cells. These characteristics make CP epithelial cells (CPECs) excellent candidates for cell therapy aiming at restoring brain tissue in neurodegenerative illnesses, including Alzheimer’s disease (AD). In the present study, using in vitro approaches, we demonstrated that CP were able to diminish amyloid-β (Aβ) levels in cell cultures, reducing Aβ-induced neurotoxicity. For in vivo studies, CPECs were transplanted into the brain of the APP/PS1 murine model of AD that exhibits advanced Aβ accumulation and memory impairment. Brain examination after cell implantation revealed a significant reduction in brain Aβ deposits, hyperphosphorylation of tau, and astrocytic reactivity. Remarkably, the transplantation of CPECs was accompanied by a total behavioral recovery in APP/PS1 mice, improving spatial and non-spatial memory. These findings reinforce the neuroprotective potential of CPECs and the use of cell therapies as useful tools in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  3. Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY et al (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386:395–399

    Article  CAS  PubMed  Google Scholar 

  4. Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O et al (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4:e262

    Article  PubMed Central  PubMed  Google Scholar 

  5. Garcia P, Youssef I, Utvik JK, Florent-Bechard S, Barthelemy V et al (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30:7516–7527

    Article  CAS  PubMed  Google Scholar 

  6. Spuch C, Antequera D, Portero A, Orive G, Hernandez RM et al (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31:5608–5618

    Article  CAS  PubMed  Google Scholar 

  7. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  8. Eriksdotter-Jonhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O et al (2012) Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 33:18–28

    Article  PubMed  Google Scholar 

  9. Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornoe J et al (2012) Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg 117:340–347

    Article  PubMed  Google Scholar 

  10. Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V et al (2001) Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol 167:40–47

    Article  CAS  PubMed  Google Scholar 

  11. Alvira-Botero X, Carro EM (2010) Clearance of amyloid-beta peptide across the choroid plexus in Alzheimer’s disease. Curr Aging Sci 3:219–229

    Article  CAS  PubMed  Google Scholar 

  12. Crossgrove JS, Smith EL, Zheng W (2007) Macromolecules involved in production and metabolism of beta-amyloid at the brain barriers. Brain Res 1138:187–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B et al (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552

    Article  CAS  PubMed  Google Scholar 

  14. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X et al (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093

    Article  CAS  PubMed  Google Scholar 

  15. Borlongan CV, Thanos CG, Skinner SJ, Geaney M, Emerich DF (2008) Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of Huntington’s disease. Cell Transpl 16:987–992

    Article  Google Scholar 

  16. Emerich DF, Thanos CG, Goddard M, Skinner SJ, Geany MS et al (2006) Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 23:471–480

    Article  PubMed  Google Scholar 

  17. Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB et al (2004) Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35:2206–2210

    Article  PubMed  Google Scholar 

  18. Wise AK, Fallon JB, Neil AJ, Pettingill LN, Geaney MS et al (2011) Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics 8:774–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bolos M, Spuch C, Ordonez-Gutierrez L, Wandosell F, Ferrer I et al (2013) Neurogenic effects of beta-amyloid in the choroid plexus epithelial cells in Alzheimer’s disease. Cell Mol Life Sci 70:10

    Article  Google Scholar 

  20. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    Article  CAS  PubMed  Google Scholar 

  21. Bartek J, Bartkova J, Kyprianou N, Lalani EN, Staskova Z et al (1991) Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc Natl Acad Sci USA 88:3520–3524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alvira-Botero X, Perez-Gonzalez R, Spuch C, Vargas T, Antequera D et al (2010) Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol Cell Neurosci 45:306–315

    Article  CAS  PubMed  Google Scholar 

  23. Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM et al (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55:801–814

    Article  CAS  PubMed  Google Scholar 

  24. Antequera D, Vargas T, Ugalde C, Spuch C, Molina JA et al (2009) Cytoplasmic gelsolin increases mitochondrial activity and reduces Abeta burden in a mouse model of Alzheimer’s disease. Neurobiol Dis 36:42–50

    Article  CAS  PubMed  Google Scholar 

  25. Emerich DF, Schneider P, Bintz B, Hudak J, Thanos CG (2007) Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells. Cell Transplant 16:697–705

    PubMed  Google Scholar 

  26. Vargas T, Ugalde C, Spuch C, Antequera D, Moran MJ et al (2010) Abeta accumulation in choroid plexus is associated with mitochondrial-induced apoptosis. Neurobiol Aging 31:1569–1581

    Article  CAS  PubMed  Google Scholar 

  27. Ghersi-Egea JF, Strazielle N (2002) Choroid plexus transporters for drugs and other xenobiotics. J Drug Target 10:353–357

    Article  CAS  PubMed  Google Scholar 

  28. de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56:1793–1809

    Article  PubMed  Google Scholar 

  29. Bhongsatiern J, Ohtsuki S, Tachikawa M, Hori S, Terasaki T (2005) Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. J Neurochem 92:1277–1280

    Article  CAS  PubMed  Google Scholar 

  30. Fujiyoshi M, Ohtsuki S, Hori S, Tachikawa M, Terasaki T (2007) 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J Neurochem 100:968–978

    Article  CAS  PubMed  Google Scholar 

  31. Hama E, Shirotani K, Iwata N, Saido TC (2004) Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J Biol Chem 279:30259–30264

    Article  CAS  PubMed  Google Scholar 

  32. Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP et al (2009) Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J Neurosci 29:7957–7965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16:15–27

    CAS  PubMed  Google Scholar 

  34. Rebeck GW, Hoe HS, Moussa CE (2010) Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem 285:7440–7446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C et al (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 158:1345–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233

    Article  CAS  PubMed  Google Scholar 

  37. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  38. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF et al (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    CAS  PubMed  Google Scholar 

  39. Matsumoto N, Taguchi A, Kitayama H, Watanabe Y, Ohta M et al (2010) Transplantation of cultured choroid plexus epithelial cells via cerebrospinal fluid shows prominent neuroprotective effects against acute ischemic brain injury in the rat. Neurosci Lett 469:283–288

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Chen KS, Knox J, Inglis J, Bernard A et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979

    Article  CAS  PubMed  Google Scholar 

  41. Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N et al (2006) Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia 53:32–42

    Article  PubMed  Google Scholar 

  42. Capsoni S, Giannotta S, Cattaneo A (2002) Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci USA 99:12432–12437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Instituto de Salud Carlos III (FIS 09-01636), Fundación Investigación Médica Mutua Madrileña (2008/93; 2010/0004), Fundación Ramón Areces, Ministerio de Educación y Ciencia (SAF2010-15558), and CIBERNED (BESAD-P.2010). We thank Isabel Sastre for technical assistance, and Agnieszka Krzyzanowska, PhD, for the careful revision of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Carro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolos, M., Antequera, D., Aldudo, J. et al. Choroid plexus implants rescue Alzheimer’s disease-like pathologies by modulating amyloid-β degradation. Cell. Mol. Life Sci. 71, 2947–2955 (2014). https://doi.org/10.1007/s00018-013-1529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1529-4

Keywords

Navigation