Skip to main content

Advertisement

Log in

Biological activity of phenolic lipids

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Phenolic lipids are a very diversified group of compounds derived from mono and dihydroxyphenols, i.e., phenol, catechol, resorcinol, and hydroquinone. Due to their strong amphiphilic character, these compounds can incorporate into erythrocytes and liposomal membranes. In this review, the antioxidant, antigenotoxic, and cytostatic activities of resorcinolic and other phenolic lipids are described. The ability of these compounds to inhibit bacterial, fungal, protozoan and parasite growth seems to depend on their interaction with proteins and/or on their membrane-disturbing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–25

    CAS  PubMed  Google Scholar 

  2. Ross AB, Åman P, Andersson R, Kamal-Eldin A (2004) Chromatographic analysis of alkylresorcinols and their metabolites. J Chromatogr A 1054:157–164

    CAS  PubMed  Google Scholar 

  3. Ross AB, Kamal-Eldin A, Åman P (2004) Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr Rev 62:81–95

    PubMed  Google Scholar 

  4. Fardet A, Rock E, Remesy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48:258–276

    CAS  Google Scholar 

  5. Bondia-Pons I, Aura AM, Vuorela S, Kolehmainen M, Mykkanen H, Poutanen K (2009) Rye phenolics in nutrition and health. J Cereal Sci 49:323–336

    CAS  Google Scholar 

  6. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    CAS  PubMed  Google Scholar 

  7. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542

    CAS  PubMed  Google Scholar 

  8. Correia S de J, David JP, David JM (2006) Metabolitos secundarios de especies de Anacardiaceae. Quim Nova 29:1287–1300

  9. Tyman JHP (2001) Chemistry and biochemistry of anacardic acids. Recent Res Dev Lipids 5:125–145

    CAS  Google Scholar 

  10. Lubi MC, Thachil ET (2000) Cashew nut shell liquid (CNSL)—a versatile monomer for polymer synthesis. Des Monomers Polym 3:123–153

    CAS  Google Scholar 

  11. Ross AB, Shepherd MJ, Bach Knudsen KE, Glitsø LV, Bowey E, Phillips J, Rowland I, Guo Z-X, Massy DJ, Åman P, Kamal-Eldin A (2003) Absorption of dietary alkyl-resorcinols in ileal cannulated pigs and rats. Br J Nutr 90:787–794

    CAS  PubMed  Google Scholar 

  12. Linko AM, Parikka K, Wahala K, Adlercreutz H (2002) Gas chromatographic-mass spectrometric method for the determination of alkylresorcinols in human plasma. Anal Biochem 308:307–313

    CAS  PubMed  Google Scholar 

  13. Linko AM, Juntunen KS, Mykkänen HM, Adlercreutz H (2005) Whole-grain rye bread consumption by women correlates with plasma alkylresorcinols and increases their concentration compared with low-fiber wheat bread. J Nutr 135:580–583

    CAS  PubMed  Google Scholar 

  14. Linko AM, Aldercreutz H (2005) Whole-grain rye and wheat alkylresorcinols are incorporated into human erythrocyte membranes. Br J Nutr 93:11–13

    CAS  PubMed  Google Scholar 

  15. Kozubek A (1989) Detergent-like effect of phenolic lipids on biological membranes. Acta Univ Wratisl 868:27–32

    Google Scholar 

  16. Kozubek A (1995) Determination of octanol/water partition coefficients for long-chain homologs of orcinol from cereal grains. Acta Biochim Pol 42:247–252

    CAS  PubMed  Google Scholar 

  17. de Maria P, Filippone P, Fontana A, Gasbarri C, Siani G, Velluto D (2005) Cardanol as a replacement for cholesterol into the lipid bilayer of POPC liposomes. Colloids Surf B Biointerfaces 40:11–18

    PubMed  Google Scholar 

  18. Kozubek A (1995) Interaction of alkylresorcinols with proteins. Acta Biochim Pol 42:241–246

    CAS  PubMed  Google Scholar 

  19. Kato T, Seki K, Kaneko R (1990) Insoluble monolayers of irisresorcinol at the air/water interface. Colloid Polym Sci 268:934–937

    CAS  Google Scholar 

  20. Gulati AS, Subba Rao BC (1964) Drug analogues from the phenolic constituents of cashewnut shell liquid. Indian J Chem 2:337–338

    CAS  Google Scholar 

  21. Stasiuk M, Kozubek A (2008) Membrane perturbing properties of natural phenolic and resorcinolic lipids. FEBS Lett 582:3607–3613

    CAS  PubMed  Google Scholar 

  22. Cieslik-Boczula K, Küpcü S, Rünzler D, Koll A, Köhler G (2009) Effects of the phenolic lipid 3-pentadecylphenol on phospholipid bilayer organization. J Mol Struct 919:373–380

    CAS  Google Scholar 

  23. Stasiuk M, Bartosiewicz D, Gubernator J, Cieslik-Boczula K, Hof M, Kozubek A (2007) A semisynthetic 5-n-alkylresorcinol derivative and its effect upon biomembrane properties. Z Naturforch 62C:881–888

    Google Scholar 

  24. Castro Dantas TN, Vale TYF, Dantas Neto AA, Scatena H Jr, Moura MCPA (2009) Micellization study and adsorption properties of an ionic surfactant synthesized from hydrogenated cardanol in air–water and in air–brine interfaces. Colloid Polym Sci 287:81–87

    CAS  Google Scholar 

  25. Tyman JHP, Bruce E (2004) Surfactant properties and biodegradation of polyethoxylates from phenolic lipids. J Surfactants Deterg 7:169–173

    CAS  Google Scholar 

  26. Peungjitton P, Sangvanich P, Pornpakakul S, Petsom A, Roengsumran S (2009) Sodium cardanol sulfonate surfactant from cashew nut shell liquid. J Surfactants Deterg 12:85–89

    CAS  Google Scholar 

  27. Bitkov VV, Nenashev VA, Khashaev ZK, Pridachina NN, Shishlov YV, Batrakov SG (1988) Membrane-forming properties of long chain 5-n-alkylresorcinols. Biol Membr 5:1055–1060

    CAS  Google Scholar 

  28. Bitkov VV, Nenashev VA, Pridachina NN, Batrakov SG (1992) Membrane-structuring properties of bacterial long-chain alkylresorcinols. Biochim Biophys Acta 1108:224–232

    CAS  PubMed  Google Scholar 

  29. Kaprelyants AS, Suleimenov MK, Sorokina AD, Deborin GA, El-Registan GI, Stoyanovich FM, Lille YE, Ostrovsky DN (1987) Structural-functional changes in bacterial and model membranes induced by phenolic lipids. Biol Membr 4:254–261

    CAS  Google Scholar 

  30. Cieslik K, Koll A, Grdadolnik J (2006) Structural characterization of a phenolic lipid and its derivative using vibrational spectroscopy. Vib Spectrosc 41:14–20

    Google Scholar 

  31. Grigoriev PA, Schlegel R, Grafe U (1998) Interaction of panosialins with planar lipid bilayers. Bioelectrochem Bioenerg 46:151–154

    CAS  Google Scholar 

  32. Gordeev KY, Bitkov VV, Pridachina NN, Nenashev VA, Batrakov SG (1991) Bacterial 5-n-alkyl(C19–C25)resorcinols are non-competitive inhibitors of phospholipase A2. Bioorg Khim 17:1357–1364

    CAS  Google Scholar 

  33. Bitkov VV, Nenashev VA, Khashaev ZH, Pridachina NN, Batrakov SG (1990) Long-chain 5-n-alkylresorcinols as the regulators of structure in lipid membranes. Biol Membr 7:135–140

    CAS  Google Scholar 

  34. Przeworska E, Gubernator J, Kozubek A (2001) Formation of liposomes by resorcinolic lipids, single-chain phenolic amphiphiles from Anacardium occidentale. Biochim Biophys Acta 1513:75–81

    CAS  PubMed  Google Scholar 

  35. Cieslik-Boczula K, Koll A (2009) The effect of 3-pentadecylphenol on DPPC bilayers ATR-IR and 31P NMR studies. Biophys Chem 140:51–56

    CAS  PubMed  Google Scholar 

  36. Loiko NG, Mulyukin AL, Kozlova AN, Kaplun AP, Sorokin VV, Borzenkov IA, Nikolaev YA, Kaprel’yants AS, El’-Registan GI (2009) Effect of hexylresorcinol, a chemical analogue of bacterial anabiosis autoinducers on the stability of membrane structures. Appl Biochem Microbiol 45:162–168

    CAS  Google Scholar 

  37. Kozubek A, Demel RA (1981) The effect of 5-(n-alk(en)yl)resorcinols from rye on membrane structure. Biochim Biophys Acta 642:242–251

    CAS  PubMed  Google Scholar 

  38. Hendrich AB, Kozubek A (1991) Calorimetric study on the interactions of 5-n-heptadec(en)ylresorcinols from cereal grains with zwitterionic phospholipid (DPPC). Z Naturforsch 46C:423–427

    Google Scholar 

  39. Gerdon S, Hoffmann S, Blume A (1994) Properties of mixed monolayers and bilayers of long-chain 5-n-alkylresorcinols and dipalmitoylphosphatidylcholine. Chem Phys Lipids 71:229–243

    CAS  Google Scholar 

  40. Kozubek A, Jezierski A, Sikorski AF (1988) The effect of nonadec(en)ylresorcinol on the fluidity of liposome and erythrocyte membranes. Biochim Biophys Acta 944:465–472

    CAS  PubMed  Google Scholar 

  41. Stasiuk M, Jaromin A, Kozubek A (2004) The effect of merulinic acid on biomembranes. Biochim Biophys Acta 1667:215–221

    CAS  PubMed  Google Scholar 

  42. Kozubek A, Demel RA (1980) Permeability changes of erythrocytes and liposomes by 5-(n-alk(en)yl)resorcinols from rye. Biochim Biophys Acta 603:220–227

    CAS  PubMed  Google Scholar 

  43. Gubernator J, Stasiuk M, Kozubek A (1999) Dual effect of alkylresorcinols, natural amphiphilic compounds, upon liposomal permeability. Biochim Biophys Acta 1418:253–260

    CAS  PubMed  Google Scholar 

  44. Siwko ME, de Vries AH, Mark AE, Kozubek A, Marrink SJ (2009) Disturb or stabilize? a molecular dynamics study of the effects of resorcinolic lipids on phospholipid bilayers. Biophys J 96:3140–3153

    CAS  PubMed  Google Scholar 

  45. Kozubek A (1987) The effect of 5-(n-alk(en)yl)resorcinols on membranes. I. Characterization of the permeability increase induced by 5-(n-heptadecenyl)resorcinol. Acta Biochim Pol 34:357–367

    CAS  PubMed  Google Scholar 

  46. Kozubek A (1985) Higher cardol homologues (5-alkenylresorcinols) from rye affect the red cell membrane-water transport. Z Naturforsch 40C:80–84

    CAS  Google Scholar 

  47. Stasiuk M, Kozubek A (1996) Modulation of hemolytic properties of resorcinolic lipids by divalent cations. Cell Mol Biol Lett 1:189–198

    CAS  Google Scholar 

  48. Stasiuk M, Kozubek A (1997) Modulation of hemolytic properties of resorcinolic lipids by divalent cations. Dependence of the effect of cations on alkylresorcinol structure. Cell Mol Biol Lett 2:77–87

    CAS  Google Scholar 

  49. Roufogalis BD, Li Q, Tran VH, Kable EPW, Duke CC (1999) Investigation of plant-derived phenolic compounds as plasma membrane Ca2+-ATPase inhibitors with potential cardiovascular activity. Drug Dev Res 46:235–249

    CAS  Google Scholar 

  50. Kozubek A (1986) The effect of some nonisoprenoid phenolic lipids upon biological membranes. Acta Univ Wratisl 886:122

    Google Scholar 

  51. Komolova GS, Gorskaya IA, Kaverinskaya TV, Sheveleva ID (1989) Influence of alkylresorcinol on respiration, nucleic acid and protein synthesis in isolated thymocytes. Biokhimiia 54:1847–1851

    CAS  PubMed  Google Scholar 

  52. Nenashev VA, Pridachina NN, Pronevich LA, Batrakov SG (1989) 5-Alkyl(C19–25)resorcinols as regulators of the oxidation of succinate and NAD-dependent substrates by mitochondria. Biokhimiia 54:784–787

    CAS  PubMed  Google Scholar 

  53. Nenashev VA, Pridachina NN, Elregistan GI, Zolotareva IN, Batrakov SG (1994) Effect of autoregulators of anabiosis of some microorganisms on respiration of rat liver mitochondria. Biokhimiia 59:11–15

    CAS  PubMed  Google Scholar 

  54. Muto J, Tanabe Y, Kawai K, Iio H (2003) Inhibition of mitochondrial respiration by climacostol. Jpn J Protozool 36:25–26

    Google Scholar 

  55. Kieleczawa J, Szalewicz A, Kozubek A, Kulig E (1987) Effect of resorcinols on electron transport in pea chloroplasts. Prog Photosynth Res 2:585–587

    CAS  Google Scholar 

  56. Toyomizu M, Okamoto K, Ishibashi T, Chen Z, Nakatsu T (2000) Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria. Life Sci 66:229–234

    CAS  PubMed  Google Scholar 

  57. Toyomizu M, Okamoto K, Akiba Y, Nakatsu T, Konishi T (2002) Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes. Biochim Biophys Acta 1558:54–62

    CAS  PubMed  Google Scholar 

  58. Arora A, Nair MG, Strasburg GM (1998) Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    CAS  PubMed  Google Scholar 

  59. Tsujimoto K, Hayashi A, Ha TJ, Kubo I (2007) Anacardic acids and ferric ion chelation. Z Naturforsch 62C:710–716

    Google Scholar 

  60. Nagabhushana KS, Shobha SV, Ravindranath B (1995) Selective ionophoric properties of anacardic acid. J Nat Prod 58:807–810

    CAS  Google Scholar 

  61. Lodovici M, Guglielmi F, Meoni M, Dolara P (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 39:1205–1210

    CAS  PubMed  Google Scholar 

  62. Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376

    CAS  Google Scholar 

  63. Hladyszowski J, Zubik L, Kozubek A (1998) Quantum mechanical and experimental oxidation studies of pentadecylresorcinol, olovetol, orcinol and resorcinol. Free Radic Res 28:359–368

    CAS  PubMed  Google Scholar 

  64. Musialik M, Litwinienko G (2007) DSC study of linolenic acid autoxidation inhibited by BHT, dehydrozingerone and olivetol. J Therm Anal Calorim 88:781–785

    CAS  Google Scholar 

  65. Struski DGJ, Kozubek A (1992) Cereal grain alk(en)ylresorcinols protect lipids against ferrous ions-induced peroxidation. Z Naturforsch 47C:47–50

    Google Scholar 

  66. Nienartowicz B, Kozubek A (1993) Antioxidant activity of cereal bran resorcinolic lipids. Pol J Food Nutr Sci 2:51–60

    CAS  Google Scholar 

  67. Winata A, Lorenz K (1996) Antioxidant potential of 5-n-pentadecylresorcinol. J Food Process Preserv 20:417–429

    CAS  Google Scholar 

  68. Erin AN, Davitashvili NG, Prilipko LL, Boldyrev AA, Lushchak VI, Batrakov SG, Pridachina NN, Serbinova AE, Kagan VE (1987) Influence of alkylresorcin on biological membranes during activation of lipid peroxidation. Biokhimiia 52:1180–1185

    CAS  PubMed  Google Scholar 

  69. Kozubek A, Nienartowicz B (1995) Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim Pol 42:309–316

    CAS  PubMed  Google Scholar 

  70. Korycińska M, Czelna K, Jaromin K, Kozubek A (2009) Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products. Food Chem 116:1013–1018

    Google Scholar 

  71. Parikka K, Rowland IR, Welch RW, Wahala K (2006) In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J Agric Food Chem 54:1646–1650

    CAS  PubMed  Google Scholar 

  72. Kamal-Eldin A, Pouru A, Eliasson C, Aman P (2000) Alkylresorcinols as antioxidants: hydrogen donation and peroxyl radical scavenging effects. J Sci Food Agric 81:353–356

    Google Scholar 

  73. Torres de Pinedo A, Penalver P, Morales JC (2007) Synthesis and evaluation of new phenolic-based antioxidants: structure–activity relationship. Food Chem 103:55–61

    CAS  Google Scholar 

  74. Trevisan MTS, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188–197

    CAS  PubMed  Google Scholar 

  75. Rodrigues FHA, Feitosa JPA, Ricardo NMPS, de Franca FCF, Carioca JOB (2006) Antioxidant activity of cashew shell nut liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1, 4-polyisoprene. J Braz Chem Soc 17:265–271

    CAS  Google Scholar 

  76. De Lima SG, Feitosa CM, Cito A, Moita Neto JM, Lopes JAD, Leite AS, Brito MC, Dantas SMM, Cavalcante A (2008) Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity. Genet Mol Res 7:806–818

    PubMed  Google Scholar 

  77. Melo-Cavalcante AAC, Rübensam G, Picada JN, da Silva EG, Moreira JCF, Henriques JAP (2003) Mutagenic evaluation, antioxidant potential and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina. Environ Mol Mutagen 41:360–369

    PubMed  Google Scholar 

  78. Amorati R, Pedulli GF, Valgimigli L, Attanasi OA, Filippone P, Fiorucci C, Saladino R (2001) Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives. J Chem Soc Perkin I 2:2142–2146

    Google Scholar 

  79. Stepanenko IYu, Strakhovskaya MG, Belenikina NS, Nikolaev YuA, Mulyukin AL, Kozlova AN, Revina AA, El’-Registan GI (2004) Protection of Saccharomyces cerevisiae against oxidative and radiation-caused damage by alkylhydroxybenzenes. Microbiology 73:163–169

    CAS  Google Scholar 

  80. Nikolaev YuA, Mulyukin AL, Stepanenko I Yu, El’-Registan GI (2006) Autoregulation of stress response in microorganisms. Mikrobiologiya 75:489–496

    Google Scholar 

  81. Konanykhina IA, Shanenko EF, Loiko NG, Nikolaev YuA, El-Registan GI (2008) Regulatory effect of microbial alkyloxybenzenes of different structure on the stress response of yeast. Appl Biochem Microbiol 44:518–522

    CAS  Google Scholar 

  82. Grazzini R, Hesk D, Heiminger E, Hildenbrandt G, Reddy CC, Cox-Foster D, Medford J, Craig R, Mumma RO (1991) Inhibition of lipoxygenase and prostaglandin endoperoxide synthase by anacardic acids. Biochem Biophys Res Commun 176:775–780

    CAS  PubMed  Google Scholar 

  83. Shobha SV, Ramadoss CS, Ravindranath B (1994) Inhibition of soybean lipoxygenase-1 by anacardic acids, cardols and cardanols. J Nat Prod 57:1755–1757

    CAS  Google Scholar 

  84. Deszcz L, Kozubek A (1997) Inhibition of soybean lipoxygenases by resorcinolic lipids from cereal bran. Cell Mol Biol Lett 2:213–222

    CAS  Google Scholar 

  85. Ha TJ, Kubo I (2005) Lipoxygenase inhibitory activity of anacardic acids. J Agric Food Chem 53:4350–4354

    CAS  PubMed  Google Scholar 

  86. Kubo I, Masuoka N, Ha TJ, Tsujimoto K (2006) Antioxidant activity of anacardic acids. Food Chem 99:555–562

    CAS  Google Scholar 

  87. Kubo I, Ha TJ, Tsujimoto K, Tocoli FE, Green IR (2008) Evaluation of lipoxygenase inhibitory activity of anacardic acids. Z Naturforsch 63C:539–546

    Google Scholar 

  88. Knodler M, Conrad J, Wenzig EM, Bauer R, Lacorn M, Beifuss U, Carle R, Schieber A (2008) Anti-inflammatory 5-(11′Z-heptadecenyl)- and 5-(8′Z, 11′Z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochemistry 69:988–993

    PubMed  Google Scholar 

  89. Hengtrakul P, Mathias M, Lorenz K (1991) Effects of cereal alkylresorcinols on human platelets thromboxane production. J Nutr Biochem 2:20–24

    CAS  Google Scholar 

  90. Roth M, Gutsche B, Herderich M, Humpf HU, Schreier P (1998) Dioxygenation of Long-Chain Alkadien(trien)ylphenols by Soybean Lipoxygenase. J Agric Food Chem 46:2952–2956

    Google Scholar 

  91. Masuoka N, Kubo I (2004) Characterization of xanthine oxidase inhibition by anacardic acids. Biochim Biophys Acta 1688:245–249

    CAS  PubMed  Google Scholar 

  92. George J, Kuttan R (1997) Mutagenic, carcinogenic and cocarcinogenic activity of cashew nut shell liquid. Cancer Lett 112:11–16

    CAS  PubMed  Google Scholar 

  93. Kozubek A, Gubernator J, Przeworska E, Stasiuk M (2000) Liposomal drug delivery, the novel approach; Plarosomes. Acta Biochim Pol 47:639–649

    CAS  PubMed  Google Scholar 

  94. Gasiorowski K, Szyba K, Brokos B, Kozubek A (1996) Antimutagenic activity of alkylresorcinols from cereal grains. Cancer Lett 106:109–115

    CAS  PubMed  Google Scholar 

  95. Gasiorowski K, Brokos B, Kozubek A, Oszmianski J (2000) The antimutagenic activity of two plant-derived compounds. A comparative cytogenic study. Cell Mol Biol Lett 5:171–190

    CAS  Google Scholar 

  96. Melo-Cavalcante AA, Picada JN, Rubensam G, Henriques JAP (2008) Antimutagenic activity of cashew apple (Anacardium occidentale Sapindales, Anacardiaceae) fresh juice and processed juice (cajuina) against methyl methanesulfonate, 4-nitroquinoline N-oxide and benzo[a]pyrene. Genet Mol Biol 31:759–766

    CAS  Google Scholar 

  97. Davydova OK, Deryabin DG, El’-Registan GI (2006) Influence of chemical analogues of microbial autoregulators on the sensitivity of DNA to UV radiation. Microbiology 75:568–574

    CAS  Google Scholar 

  98. Giannetti BM, Steglich W, Quack W, Anke T, Oberwinkler F (1978) Antibiotika as Basidiomyceten, VI. Merulinsauren A, B und C, neue antibiotika aus Merulius tremellosus Fr. und Phlebia radiata Fr. Z Naturforsch 33C:807–816

    CAS  Google Scholar 

  99. Barr JR, Murty VS, Yamaguchi K, Smith DH, Hecht SM (1988) 5-Alkylresorcinols from Hakea amplexicaulis that cleave DNA. Chem Res Toxicol 1:204–207

    CAS  PubMed  Google Scholar 

  100. Lytollis W, Scannell RT, An H, Murty VS, Reddy KS, Barr JR, Hecht SM (1995) 5-alkylresorcinols from Hakea trifurcata that cleave DNA. J Am Chem Soc 117:12683–12690

    CAS  Google Scholar 

  101. Starck SR, Deng JZ, Hecht SM (2000) Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair. Biochemistry 39:2413–2419

    CAS  PubMed  Google Scholar 

  102. Singh US, Scannell RT, An H, Carter BJ, Hecht SM (1995) DNA cleavage by di- and tri- hydroxyalkylbenzenes. Characterization of products and roles of O2, Cu(II) and alkali. J Am Chem Soc 117:12691–12699

    CAS  Google Scholar 

  103. Ma J, Jones SH, Hecht SM (2004) Phenolic acid amides: a new type of DNA strand scission agent from Piper caninum. Bioorg Med Chem 12:3885–3889

    CAS  PubMed  Google Scholar 

  104. Itokawa H, Totsuka N, Nakahara K, Maezuru M, Takeya K, Kondo M, Inamatsu M, Morita H (1989) A quantitative structure-activity relationship for antitumor activity of long-chain phenols from Ginkgo biloba L. Chem Pharm Bull 37:1619–1621

    CAS  PubMed  Google Scholar 

  105. Arisawa M, Ohmura K, Kobayashi A, Morita N (1989) A cytotoxic constituent of Lysimachia japonica Thrunb. (Primulaceae) and the structure-activity relationships of related compounds. Chem Pharm Bull 37:2431

    CAS  PubMed  Google Scholar 

  106. Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin JP, Asakawa Y (1987) Antitumor principles from Ginkgo biloba L. Chem Pharm Bull 35:3016–3020

    CAS  PubMed  Google Scholar 

  107. Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Higashihara H, Mukainaka T, Iizuka M, Hayashi Y, Kimura Y, Nishino H (2003) Sterol ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran oils and their inhibitory effects on Epstein–Barr virus activation. J Agric Food Chem 51:6683–6688

    CAS  PubMed  Google Scholar 

  108. Wyllie AH (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11:95–103

    CAS  PubMed  Google Scholar 

  109. Buonanno F, Quassinti L, Bramucci M, Amantini C, Lucciarini R, Santoni G, Iio H, Ortenzi C (2008) The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem Biol Interact 176:151–164

    CAS  PubMed  Google Scholar 

  110. Ahlemeyer B, Selke D, Schaper C, Klumpp S, Krieglstein J (2001) Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C. Eur J Pharmacol 430:1–7

    CAS  PubMed  Google Scholar 

  111. Filip P, Anke T, Sterner O (2002) 5-(2′-oxoheptadecyl)-resorcinol and 5-(2′-oxononadecyl)-resorcinol, cytotoxic metabolites from a wood-inhabiting Basidiomycete. Z Naturforsch 57C:1004–1008

    Google Scholar 

  112. Ruffa MJ, Ferraro G, Wagner ML, Calcagno ML, Campos RH, Cavallaro L (2002) Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J Ethnopharmacol 79:335–339

    CAS  PubMed  Google Scholar 

  113. Lopez P, Ruffa MJ, Cavallaro L, Campos R, Martino V, Ferraro G (2005) 1, 3-dihydroxy-5-(tridec-40, 70-dienyl)benzene: a new cytotoxic compound from Lithraea molleoides. Phytomedicine 12:108–111

    CAS  PubMed  Google Scholar 

  114. Barbini L, Lopez P, Ruffa MJ, Martino V, Ferraro G, Campos R, Cavallaro L (2006) Induction of apoptosis on human hepatocarcinoma cell lines by an alkyl resorcinol isolated from Lithraea molleoides. World J Gastroenterol 12:5959–5963

    CAS  PubMed  Google Scholar 

  115. Chen CY, Liu TZ, Liu YW, Tseng WC, Liu RH, Lu FJ, Lin YS, Kuo SH, Chen CH (2007) 6-Shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J Agric Food Chem 55:948–954

    CAS  PubMed  Google Scholar 

  116. Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-{kappa}B-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-{kappa}B{alpha} kinase, leading to potentiation of apoptosis. Blood 111:4880–4891

    CAS  PubMed  Google Scholar 

  117. Hecker H, Johannisson R, Koch E, Siegers CP (2002) In vitro evaluation of the cytotoxic potential of alkylphenols from Ginko biloba L. Toxicology 177:167–177

    CAS  PubMed  Google Scholar 

  118. Kubo I, Ochi M, Vieira PC, Komatsu S (1993) Antitumor agents from cashew (Anacardium occidentale) apple juice, J. J Agric Food Chem 41:1012–1015

    CAS  Google Scholar 

  119. Acevedo HR, Rojas MD, Arceo SD, Soto Hernandez M, Martinez Vazquez M, Terrazas T, del Toro GV (2006) Effect of 6-nonadecyl salicylic acid and its methyl ester on the induction of micronuclei in polychromatic erythrocytes in mouse peripheral blood. Mutat Res 609:43–46

    CAS  PubMed  Google Scholar 

  120. Rea AI, Schmidt JM, Setzer WN, Sibanda S, Taylor C, Gwebu ET (2003) Cytotoxic activity of Ozoroa insignis from Zimbabwe. Fitoterapia 74:732–735

    CAS  PubMed  Google Scholar 

  121. Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong YS, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797–800

    CAS  PubMed  Google Scholar 

  122. Jin W, Zjawiony JK (2006) 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod 69:704–706

    CAS  PubMed  Google Scholar 

  123. Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39:418–421

    CAS  Google Scholar 

  124. Kubo I, Muroi H, Kubo A (1994) Naturally occurring antiacne agents. J Nat Prod 57:9–17

    CAS  PubMed  Google Scholar 

  125. Kraal JH, Hussain AA, Gregorio SB, Akaho E (1979) Exposure time and the effect of hexylresorcinol on bacterial aggregates. J Dent Res 58:2125–2131

    CAS  PubMed  Google Scholar 

  126. Kubo I, Muroi H, Himejima M (1993) Structure-antibacterial activity relationships of anacardic acids. J Agric Food Chem 41:1016–1019

    CAS  Google Scholar 

  127. Kubo I, Komatsu S, Ochi M (1986) Molluscicides from the cashew Anacardium occidentale and their large-scale isolation. J Agric Food Chem 34:970–973

    CAS  Google Scholar 

  128. Muroi H, Kubo I (1996) Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. J Appl Bacteriol 80:387–395

    CAS  PubMed  Google Scholar 

  129. Bouttier S, Fourniat J, Garofalo C, Gleye C, Laurens A, Hocquemiller R (2002) β-Lactamase Inhibitors from Anacardium occidentale. Pharm Biol 40:231–234

    CAS  Google Scholar 

  130. Kubo I, Nihei K, Tsujimoto K (2003) Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J Agric Food Chem 51:7624–7628

    CAS  PubMed  Google Scholar 

  131. Muroi H, Nihei K, Tsujimoto K, Kubo I (2004) Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg Med Chem 12:583–587

    CAS  PubMed  Google Scholar 

  132. Nagabhushana KS, Umamaheshwari S, Tocoli FE, Prabhu SK, Green IR, Ramadoss CSJ (2002) Inhibition of soybean and potato lipoxygenases by bhilawanols from bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues. J Enzyme Inhib Med Chem 2002(17):255–259

    Google Scholar 

  133. Green IR, Tocoli FE, Hwa Lee S, Nihei K, Kubo I (2007) Molecular design of anti-MRSA agents based on the anacardic acid scaffold. Bioorg Med Chem 15:6236–6241

    CAS  PubMed  Google Scholar 

  134. Begum P, Hashidoko Y, Islam MdT, Ogawa Y, Tahara S (2002) Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Z Naturforsch 57C:874–882

    Google Scholar 

  135. Narasimhan B, Panghal A, Singh N, Dhake AS (2008) Efficiency of anacardic acid as preservative in tomato products. J Food Process Preserv 32:600–609

    CAS  Google Scholar 

  136. Kubo J, Lee JR, Kubo I (1999) Anti-Helicobacter pylori agents from the cashew apple. J Agric Food Chem 47:533–537

    CAS  PubMed  Google Scholar 

  137. Castillo-Juarez I, Rivero-Cruz F, Celis H, Romero I (2007) Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens. J Ethnopharmacol 114:72–77

    CAS  PubMed  Google Scholar 

  138. Muroi H, Kubo I (1993) Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J Agric Food Chem 41:1780–1783

    CAS  Google Scholar 

  139. Green IR, Tocoli FE, Lee SH, Nihei K, Kubo I (2008) Design and evaluation of anacardic acid derivatives as anticavity agents. Eur J Med Chem 43:1315–1320

    CAS  PubMed  Google Scholar 

  140. Feresin GE, Tapia A, Sortino M, Zacchino S, de Arias AR, Inchausti A, Yaluff G, Rodriguez J, Theoduloz C, Schmeda-Hirschmann G (2003) Bioactive alkyl phenols and embelin from Oxalis erythrorhiza. J Ethnopharmacol 88:241–247

    CAS  PubMed  Google Scholar 

  141. Chitra M, Shyamala Devi CS, Sukumar E (2003) Antibacterial activity of embelin. Fitoterapia 74:401–403

    CAS  PubMed  Google Scholar 

  142. Mulyukin AL, Lusta KA, Gryaznova MN, Kozlova AN, Duzha MV, Duda VI, El’-Registan GI (1996) Formation of resting cells by Bacillus cereus and Micrococcus luteus. Microbiology 65:683–689

    Google Scholar 

  143. Demkina EV, Soina VS, El’-Registan GI, Zvyagintsev DG (2000) Reproductive resting forms of Arthrobacter globiformis. Microbiology 69:309–313

    CAS  Google Scholar 

  144. Mulyukin AL, Kozlova AN, Kaprel’yants AS, El’-Registan GI (1996) The d1 autoregulatory factor in Micrococcus luteus cells and culture liquid: detection and accumulation dynamics. Microbiology 65:15–20

    Google Scholar 

  145. Osipov GA, El’-Registan GI, Svetlichnyi VA, Kozlova AN, Duda VI (1985) Chemical nature of the autoregulating factor d1 in Pseudomonas carboxydoflava. Mikrobiologiya 54:186–190

    CAS  Google Scholar 

  146. Kolpakov AI, Il’inskaya ON, Bespalov MM, Kupriyanova-Ashina FG, Gal’chenko VF, Kurganov BI, El’-Registan GI (2000) Stabilization of enzymes by dormancy autoinducers as a possible mechanism of resistance of resting microbial forms. Microbiology 69:180–185

    CAS  Google Scholar 

  147. Il’inskaya ON, Kolpakov AI, Shmidt MA, Doroshenko EV, Mulyukin AL, El’-Registan GI (2002) The role of bacterial growth autoregulators (alkyl hydroxybenzenes) in the response of staphylococci to stresses. Mikrobiologiya 71:23–29

    Google Scholar 

  148. Mulyukin AL, Filippova SN, Kozlova AN, Surgucheva NA, Bogdanova TI, Tsaplina IA, El’-Registan GI (2006) Non-species-specific effects of unacylated homoserine lactone and hexylresorcinol, low molecular weight autoregulators, on the growth and development of bacteria. Microbiology 75:405–414

    CAS  Google Scholar 

  149. Davydova OK, Deryabin KG, El’-Registan GI (2007) IR spectroscopic research on the impact of chemical analogues of autoregulatory d1 factors of microorganisms on structural changes in DNA. Microbiology 76:266–272

    CAS  Google Scholar 

  150. Funa N, Ozawa H, Hirata, Horinouchi S (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA 103:6356–6361

    CAS  PubMed  Google Scholar 

  151. Segura D, Vite O, Romero Y, Moreno S, Castañeda M, Espín G (2009) Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol 191:3142–3148

    CAS  PubMed  Google Scholar 

  152. Rejman J, Kozubek A (2004) The effect of alkylresorcinol on lipid metabolism in Azotobacter chroococcum. Z Naturforsch 59C:393–398

    Google Scholar 

  153. Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655–1658

    PubMed  Google Scholar 

  154. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  155. Cojocaru M, Droby S, Glotter E, Goldman A, Gottlieb HE, Jacoby B, Prusky D (1986) 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry 25:1093–1095

    CAS  Google Scholar 

  156. Droby S, Prusky D, Jacoby B, Goldman A (1987) Induction of antifungal resorcinols in flesh of unripe mango fruits and its relation to latent infection by Alternaria alternata. Physiol Mol Plant Pathol 30:285–292

    CAS  Google Scholar 

  157. Hassan MK, Dann EK, Irving DE, Coates LM (2007) Concentrations of constitutive alk(en)ylresorcinols in peel of commercial mango varieties and resistance to postharvest anthracnose. Physiol Mol Plant Pathol 71:158–165

    CAS  Google Scholar 

  158. Garcia S, Garcia C, Heinzen H, Moyna P (1997) Chemical basis of the resistance of barley seeds to pathogenic fungi. Phytochemistry 44:415–418

    CAS  PubMed  Google Scholar 

  159. Lee SJ, Park WH, Moon HI (2001) Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. J Agric Food Chem 49:4635–4641

    Google Scholar 

  160. Melo-Cavalcante AAC, Rübensam G, Erdtmann B, Brendel M, Henriques JAP (2005) Cashew (Anacardium occidentale) apple juice lowers mutagenicity of aflatoxin B1 in S. typhimurium TA102. Genet Mol Biol 28:328–333

    Google Scholar 

  161. Reiss J (1989) Influence of alkylresorcinols from rye and related compounds on the growth of food-borne molds. Cereal Chem 66:491–493

    CAS  Google Scholar 

  162. Zarnowski R, Kozubek A, Pietr SJ (1999) Effect of rye 5-n-alkylresorcinols on in vitro growth of phytopatogenic Fusarium and Rhizoctonia fungi. Bull Acad Pol Sci Biol 47:231–235

    CAS  Google Scholar 

  163. Jimenez-Romero C, Torres-Mendoza D, Gonzalez LDU, Ortego-Barria E, McPhail KL, Gerwick WH, Cubillas-Rios L (2007) Hydroxyalkenylresorcinols from Stylogyne turbacensis. J Nat Prod 70:1249–1252

    CAS  PubMed  Google Scholar 

  164. Lee SJ, Park WH, Moon HI (2009) Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol Res 104:463–466

    PubMed  Google Scholar 

  165. Suresh M, Ray RK (1990) Cardol: the antifilarian principle from Anacardium occidentale. Curr Sci 59:477–479

    CAS  Google Scholar 

  166. Ahn YJ, Kwon M, Park HM, Han CK (1997) Potent insecticidal activity of Ginkgo biloba-derived trilactone terpenes against Nilaparvata lugens. ACS Symp Ser 658:90–105

    CAS  Google Scholar 

  167. Kwon M, Ahn YJ, Yoo JK, Choi BR (1996) Potent insecticidal activity of extracts from Ginkgo biloba leaves against Nilaparvata lugens (Homoptera: Delphacidae). Appl Entomol Zool 31:162–166

    Google Scholar 

  168. Pan W, Luo P, Fu R, Gao P, Long Z, Xu F, Xiao H, Liu S (2006) Acaricidal activity against Panonychus citri of a ginkgolic acid from the external seed coat of Ginkgo biloba. Pest Manag Sci 62:283–287

    CAS  PubMed  Google Scholar 

  169. Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Mele G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem 11:31–33

    CAS  Google Scholar 

  170. He W, Van Puyvelde L, Bosselaers J, De Kimpe N, Van der Flaas M, Roymans A, Mathenge SG, Mudida FP, Chalo Mutiso PB (2002) Activity of 6-pentadecylsalicylic acid from Ozoroa insignis against marine crustaceans. Pharm Biol 40:74–76

    CAS  Google Scholar 

  171. Schultz DJ, Olsen C, Cobbs GA, Stolowich NJ, Parrott MM (2006) Bioactivity of anacardic acid against Colorado potato beetle (Leptinotarsa decemlineata) larvae. J Agric Food Chem 54:7522–7529

    CAS  PubMed  Google Scholar 

  172. Sikorski AF, Michalak K, Bobrowska M, Kozubek A (1987) Interaction of spectrin with some amphipatic compounds. Stud Biophys 121:183–191

    CAS  Google Scholar 

  173. Wang D, Girard TJ, Kasten TP, LaChance RM, Miller-Wideman MA, Durley RC (1998) Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor—factor VIIa complex. J Nat Prod 61:1352–1355

    CAS  PubMed  Google Scholar 

  174. Kozubek A, Nietubyc M, Sikorski AF (1992) Modulation of the activities of membrane enzymes by cereal grain resorcinolic lipids. Z Naturforsch 47C:41–46

    Google Scholar 

  175. Stasiuk M, Bartosiewicz D, Kozubek A (2008) Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chem 108:996–1001

    CAS  Google Scholar 

  176. de Paula AAN, Martins JBL, Gargano R, dos Santos ML, Romeiro LAS (2007) Electronic structure calculations toward new potentially AChE inhibitors. Chem Phys Let 446:304–308

    Google Scholar 

  177. Kozubek A, Wroblewski Z (1990) Cereal grain long chain amphiphilic resorcinolic lipids inhibit significantly binding of fibrinogen by platelets whereas short chain resorcinolic lipids and fatty acids do not. Stud Biophys 139:177–181

    CAS  Google Scholar 

  178. Kozubek A (1992) The effect of resorcinolic lipids on phospholipid hydrolysis by phospholipase A2. Z Naturforsch 47C:608–612

    Google Scholar 

  179. Aoyagi T, Yagisawa M, Kumagai M, Hamada M, Okami Y, Takeuchi T, Umezawa H (1971) An enzyme inhibitor, panosialin, produced by streptomyces: I. Biological activity, isolation and characterization of panosialin. J Antibiot 24:860–869

    CAS  PubMed  Google Scholar 

  180. Kumagai M, Suhara Y, Aoyagi T, Umezawa H (1971) An enzyme inhibitor, panosialin, produced by streptomyces: II. Chemistry of panosialins, 5-alkylbenzene-1, 3-disulfates. J Antibiot 24:870–875

    CAS  PubMed  Google Scholar 

  181. Shinoda K, Shitara K, Yoshihara Y, Kusano A, Uosaki Y, Ohta S, Hanai N, Takahashi I (1998) Panosialins, inhibitors of an a1, 3-fucosyltransferase Fuc-TVII, suppress the expression of selectin ligands on U937 cells. Glycoconj J 15:1079–1083

    CAS  PubMed  Google Scholar 

  182. Tsuge N, Mizokami M, Imai S, Shimazu A, Seto H (1992) Adipostatins A and B, new inhibitors of glycerol-3-phosphate dehydrogenase. J Antibiot 45:886–891

    CAS  PubMed  Google Scholar 

  183. Rejman J, Kozubek A (1997) Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cell Mol Biol Lett 2:411–419

    CAS  Google Scholar 

  184. Rejman J, Kozubek A (2004) Inhibitory effect of natural phenolic lipids upon NAD-dependent dehydrogenases and on triglyceride accumulation in 3T3–L1 cells in culture. J Agric Food Chem 52:246–250

    CAS  PubMed  Google Scholar 

  185. Irie J, Murata M, Homma S (1996) Glycerol-3-phosphate dehydrogenase inhibitors, anacardic acids, from Ginkgo biloba. Biosci Biotechnol Biochem 60:240–243

    CAS  Google Scholar 

  186. Murata M, Irie J, Homma S (1997) Inhibition of lipid synthesis of bacteria, yeast and animal cells by anacardic acids, glycerol-3-phosphate dehydrogenase inhibitors from Ginkgo. Lebensm Wiss Technol 30:458–463

    CAS  Google Scholar 

  187. Pereira JM, Severino RP, Vieira PC, Fernandes JB, da Silva M, Zottis A, Andricopulo AD, Oliva G, Correa AG (2008) Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi. Bioorg Med Chem 16:8889–8895

    CAS  PubMed  Google Scholar 

  188. Freitas RF, Prokopczyk IM, Zottis A, Oliva G, Andricopulo AD, Trevisan MTS, Vilegas W, Silva MGV, Montanari CA (2009) Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg Med Chem 17:2476–2482

    CAS  PubMed  Google Scholar 

  189. Vincieri FF, Vinzenzini MT, Vanni P (1981) Extraction of active compounds from sarcotesta of Ginkgo biloba seed: inhibition of some dehydrogenase activities. Riv Ital EPPOS 63:79–82

    CAS  Google Scholar 

  190. Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580:4353–4356

    CAS  PubMed  Google Scholar 

  191. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300*. J Biol Chem 278:19134–19140

    CAS  PubMed  Google Scholar 

  192. Eliseeva ED, Valkov V, Jung M, Jung MO (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6:2391–2398

    CAS  PubMed  Google Scholar 

  193. Souto JA, Conte M, Alvarez R, Nebbioso A, Carafa V, Altucci L, de Lera AR (2008) Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. Chemmedchem 3:1435–1442

    CAS  PubMed  Google Scholar 

  194. Sbardella G, Castellano S, Vicidomini C, Rotili D, Nebbioso A, Miceli M, Altucci L, Mai A (2008) Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg Med Chem Lett 18:2788–2792

    CAS  PubMed  Google Scholar 

  195. Schmeck B, Lorenz J, N’Guessan PD, Opitz B, van Laak V, Zahlten J, Slevogt H, Witzenrath M, Flieger A, Suttorp N, Hippenstiel S (2008) Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J Immunol 181:940–947

    CAS  PubMed  Google Scholar 

  196. Cui L, Miao J, Furuya T, Fan Q, Li XY, Rathod PK, Su XZ, Cui LW (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryot Cell 7:1200–1210

    CAS  PubMed  Google Scholar 

  197. Toyomizu M, Sugiyama S, Jin RL, Nakatsu T (1993) Glucosidase and aldose reductase inhibitors: constituents of cashew, Anacardium occidentale, nut shell liquid. Phytother Res 7:252–254

    CAS  Google Scholar 

  198. Kubo I, Kinst-Hori I, Yokokawa Y (1994) Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod 57:545–551

    CAS  PubMed  Google Scholar 

  199. Kishore AH, Vedamurthy BM, Mantelingu K, Agrawal S, Reddy BAA, Roy S, Rangappa KS, Kundu TK (2008) Specific small-molecule activator of Aurora kinase A induces autophosphorylation in a cell-free systems. J Med Chem 51:792–797

    CAS  PubMed  Google Scholar 

  200. Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura KI, Sodeoka M, Yoshida M (2009) Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16:133–140

    CAS  PubMed  Google Scholar 

  201. Martirosova EI, Karpekina TA, El’-Registan GI (2004) Enzyme modification by natural chemical chaperons of microorganisms. Microbiology 73:609–615

    CAS  Google Scholar 

  202. YuA Nikolaev, Loiko NG, Stepanenko IYu, Shanenko EF, Martirosova EI, Plakunov VK, Kozlova AN, Borzenkov IA, Korotina OA, Rodin DS, Krupyanskii YuF, El-Registan GI (2008) Changes in physicochemical properties of proteins, caused by modification with alkylhydroxybenzenes. Appl Biochem Microbiol 44:143–150

    Google Scholar 

  203. Chen J, Zhang JH, Wang LK, Sucheck SJ, Snow AM, Hecht SM (1998) Inhibitors of DNA polymerase β from Schoepfia californica. J Chem Soc Chem Commun 24:2769–2770

    Google Scholar 

  204. Hecht SM (2003) Inhibitors of the lyase activity of DNA polymerase beta. Pharm Biol 41:68–77

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the publishing editor of Cellular and Molecular Life Sciences for inviting us to present this paper and the members and students of the Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, for their support and continuous encouragement throughout the projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stasiuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stasiuk, M., Kozubek, A. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 67, 841–860 (2010). https://doi.org/10.1007/s00018-009-0193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0193-1

Keywords

Navigation