Skip to main content
Log in

Isotropic functions revisited

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

To a real n-dimensional vector space V and a smooth, symmetric function f defined on the n-dimensional Euclidean space we assign an associated operator function F defined on linear transformations of V. F shall have the property that, for each inner product g on V, its restriction \(F_{g}\) to the subspace of g-selfadjoint operators is the isotropic function associated to f. This means that it acts on these operators via f acting on their eigenvalues. We generalize some well-known relations between the derivatives of f and each \(F_{g}\) to relations between f and F, while also providing new elementary proofs of the known results. By means of an example we show that well-known regularity properties of \(F_{g}\) do not carry over to F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andrews, Pinching estimates and motion of hypersurfaces by curvature functions, J. Reine Angew. Math. 608 (2007), 17–33.

    MathSciNet  MATH  Google Scholar 

  2. J. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51 (1984), 699–728.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Barbançon, Théorème de Newton pour les fonctions de classe \({C}^r\), Ann. Sci. Éc. Norm. Supér. (4) 5 (1972), 435–457.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bowen and C. C. Wang, Acceleration waves in inhomogeneous isotropic elastic bodies, Arch. Rat. Mech. Anal. 38 (1970), 13–45.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bowen and C. C. Wang, Corrigendum: Acceleration waves in inhomogeneous isotropic elastic bodies, Arch. Rat. Mech. Anal. 40 (1971), 403–403.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bryan, M. N. Ivaki, and J. Scheuer, Harnack inequalities for evolving hypersurfaces on the sphere, to appear in Commun. Anal. Geom., arxiv:1512.03374, 2015.

  7. P. Bryan, M. N. Ivaki, and J. Scheuer, Harnack inequalities for curvature flows in Riemannian and Lorentzian manifolds, preprint, arxiv:1703.07493, 2017.

  8. P. Chadwick and R. Ogden, On the definition of elastic moduli, Arch. Rat. Mech. Anal. 44 (1970), 41–53.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Chadwick and R. Ogden, A theorem of tensor calculus and its application to isotropic elasticity, Arch. Rat. Mech. Anal. 44 (1970), 54–68.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ecker and G. Huisken, Immersed hypersurfaces with constant Weingarten curvature, Math. Ann. 283 (1989), 329–332.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Gerhardt, Curvature problems, Series in Geometry and Topology, vol. 39, International Press of Boston Inc., Sommerville, 2006.

    MATH  Google Scholar 

  12. G. Glaeser, Fonctions composées différentiables, Ann. Math. 77 (1963), 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), 45–70.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Jiang, Properties of k-isotropic functions, Ph.D. thesis, University of Western Ontario, 2017.

  15. T. Jiang and H. Sendov, A unified approach to operator monotone functions, Linear Algebra Appl. 541 (2018), 185–210.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Lewis and H. Sendov, Twice differentiable spectral functions, SIAM J. Matrix. Anal. Appl. 23 (2001), 368–386.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Mead, Newton’s identities, Amer. Math. Monthly 99 (1992), 749–751.

  18. H. Sendov, The higher-order derivatives of spectral functions, Linear Algebra Appl. 424 (2007), 240–281.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Šilhavý, Differentiability properties of isotropic functions, Duke Math. J. 104 (2000), 367–373.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), 91–125.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Zedek, Continuity and location of zeros of linear combinations of polynomials, Proc. Amer. Math. Soc. 16 (1965), 78–84.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Scheuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheuer, J. Isotropic functions revisited. Arch. Math. 110, 591–604 (2018). https://doi.org/10.1007/s00013-018-1162-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1162-4

Keywords

Mathematics Subject Classification

Navigation