Skip to main content
Log in

Minimal tiled orders of finite global dimension

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

A directed graph is associated to any basic tiled order, and it turns out that the graph is connected for all known examples of tiled orders of finite global dimension. It is proved that the minimal connected tiled orders of finite global dimension in a fixed algebra are of global dimension two, and that up to isomorphism, these minimal orders are characterized by their unoriented graph which is a tree. Their irreducible representations are in one-to-one correspondence with the possible orientations of this tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York - Heidelberg - Berlin, 1974.

  2. H. Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.

    MATH  Google Scholar 

  3. I. N. Bernšteĭn, I. M. Gelfand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), 19-33.

    MathSciNet  MATH  Google Scholar 

  4. K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), 331-378.

  5. J. A. Drozd and V. V. Kiričenko, On quasi-Bass orders, Izv. Akad. Nauk SSSR 36 (1972), 328-370.

    MathSciNet  MATH  Google Scholar 

  6. K. L. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126-130.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Fujita, Tiled orders of finite global dimension, Trans. Amer. Math. Soc. 322 (1990), 329-342.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Hazewinkel, N. Gubareni, and V. V. Kirichenko, Algebras, rings and modules, Vol. 2, Mathematics and Its Applications, 586, Springer, Dordrecht, 2007.

  9. W. S. Jansen and C. J. Odenthal, A tiled order having large global dimension, J. Algebra 192 (1997), 572-591.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. A. Jategaonkar, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330.

  11. A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, 98, Cambridge University Press, Cambridge, 1986.

    Book  Google Scholar 

  12. I. Kaplansky, Fields and rings, The University of Chicago Press, Chicago, Ill.-London, 1969.

    Google Scholar 

  13. D. Kelly and I. Rival, Crowns, fences, and dismantlable lattices, Canad. J. Math. 26 (1974), 1257-1271.

  14. S. König and A. Wiedemann, Global dimension two orders are quasi-hereditary, Manuscr. Math. 66 (1989), 17-23.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. J. Müller, Localization in fully bounded Noetherian rings, Pacific J. Math. 67 (1976), 233-245.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ramras, Orders with finite global dimension, Pacific J. Math. 50 (1974), 583-587.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Reiner, Maximal Orders, Corrected reprint of the 1975 original, With a foreword by M. J. Taylor, London Mathematical Society Monographs, New Series, 28, The Clarendon Press, Oxford University Press, Oxford, 2003.

  18. C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Rump, Discrete posets, cell complexes, and the global dimension of tiled orders. Comm. Algebra 24 (1996), 55-107.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-P. Serre, Sur la dimension homologique des anneaux et des modules noethériens, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pp. 175-189, Science Council of Japan, Tokyo, 1956.

  21. R. B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. T. Tutte, A class of Abelian groups, Canad. J. Math. 8 (1956), 13-28.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. T. Tutte, A homotopy theorem for matroids, I, II, Trans. Amer. Math. Soc. 88 (1958), 144-174.

    MathSciNet  MATH  Google Scholar 

  24. W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. J. A. Welsh, Matroid theory, L. M. S. Monographs, No. 8, Academic Press, London-New York, 1976.

  26. A. Wiedemann and K. W. Roggenkamp, Path orders of global dimension two, J. Algebra 80 (1983), 113-133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rump.

Additional information

Dedicated to B. V. M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rump, W. Minimal tiled orders of finite global dimension. Arch. Math. 109, 29–39 (2017). https://doi.org/10.1007/s00013-017-1040-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1040-5

Mathematics Subject Classification

Keywords

Navigation