Skip to main content
Log in

The three-cross theorem and the six-cross theorem of Pálfy and Szabó

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In 1995, Pálfy and Szabó stated the theorem that a projective space satisfies the six-cross theorem if and only if it is Desarguesian. A mistake in their proof is corrected. Moreover, for projective planes, the three-cross theorem of Pálfy and Szabó is identified as the Reidemeister condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coppel W. A.: Foundations of convex geometry. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Coxeter H.S.M.: Projective geometry. Blaisdell, New York (1964)

    MATH  Google Scholar 

  3. Dembowski P.: Finite geometries. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  4. Grätzer, G. A.: General lattice theory, 2nd edn. Academic Press, New York (2003)

  5. Hessenberg, G.: Beweis des Desarguesschen Satzes aus dem Pascalschen. Math. Ann. 61, 161–172 (1905) (German)

  6. Hilbert D., Cohn-Vossen S.: Geometry and the imagination. Chelsea, New York (1952)

    MATH  Google Scholar 

  7. Hodge W. V. D, Pedoe D.: Methods of algebraic geometry, vol. I. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  8. Jónsson B.: On the representations of lattices. Math. Scand. 1, 193–206 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jónsson B.: Modular lattices and Desargues’ theorem. Math. Scand. 2, 295–314 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klingenberg, W.: Beziehungen zwischen einigen affinen Schließungssatzen. Abh. Hamburg 18, 120–143 (1952) (German)

  11. Klingenberg, W.: Beweis des Desarguesschen Satzes aus der Reidemeisterfigur und verwandte Sätze. Abh. Hamburg 19, 158–175 (1955) (German)

  12. Pálfy, P. P.: Groups and lattices. In: Groups St. Andrews 2001 in Oxford. Vol. II. London Math. Soc. Lecture Note Ser., vol. 305, pp. 428–454. Cambridge Univ. Press, Cambridge (2003)

  13. Pálfy P.P., Szabó C.: An identity for subgroup lattices of Abelian groups. Algebra Universalis 33, 191–195 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pálfy, P.P., Szabó, C.: Congruence varieties of groups and Abelian groups. In: Baker, K.A., Wille R. (eds.) Lattice Theory and its Applications (Darmstadt, 1991), pp. 163–183. Helderman Verlag, Lemgo (1995)

  15. Pickert G.: Projektive Ebenen, Zweite Auflage. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  16. Reidemeister, K.: Topologische Fragen der Differentialgeometrie. V. Gewebe und Gruppen. Math. Z. 29, 427–435 (1929) (German)

  17. Reye, T.: Die Hexaëder- und die Octaëder-Configurationen (124, 163). Acta Math. 1, 97–108 (1882) (German)

  18. Veblen O, Young J.W.: Projective geometry, vol. 1. Blaisdell, New York (1910)

    MATH  Google Scholar 

  19. Wagner, A.: Theorems about Reidemeister conditions. In: Plaumann, P., Strambach, K. (eds.) Geometry: von Staudts point of view (Bad Windsheim, 1980), pp. 249–274. Reidel, Dordrecht (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Penttila.

Additional information

Presented by R. Freese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penttila, T. The three-cross theorem and the six-cross theorem of Pálfy and Szabó. Algebra Univers. 78, 431–436 (2017). https://doi.org/10.1007/s00012-017-0473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0473-9

2010 Mathematics Subject Classification

Key words and phrases

Navigation