Skip to main content
Log in

Diagrams and rectangular extensions of planar semimodular lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In 2009, G. Grätzer and E. Knapp proved that every planar semimodular lattice has a rectangular extension. We prove that, under reasonable additional conditions, this extension is unique. This theorem naturally leads to a hierarchy of special diagrams of planar semimodular lattices. These diagrams are unique in a strong sense; we also explore many of their additional properties. We demonstrate the power of our new classes of diagrams in two ways. First, we prove a simplified version of our earlier Trajectory Coloring Theorem, which describes the inclusion con\({(\mathfrak{p}) \supseteq}\) con\({(\mathfrak{q})}\) for prime intervals \({\mathfrak{p}}\) and \({\mathfrak{q}}\) in slim rectangular lattices. Second, we prove G. Grätzer’s Swing Lemma for the same class of lattices, which describes the same inclusion more simply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H.: The geometry of the chamber system of a semimodular lattice. Order 8, 143–158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Czédli G.: The matrix of a slim semimodular lattice. Order 29, 85–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czédli G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Czédli G.: Coordinatization of join-distributive lattices. Algebra Universalis 71, 385–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Czédli G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72, 125–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czédli G.: Finite convex geometries of circles. Discrete Mathematics 330, 61–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czédli G.: Quasiplanar diagrams and slim semimodular lattices. Order 33, 239–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Czédli G., Dékány T., Ozsvárt L., Szakács N., Udvari B.: On the number of slim, semimodular lattices. Mathematica Slovaca 66, 5–18 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Czédli G., Grätzer G.: Notes on planar semimodular lattices. VII. Resections of planar semimodular lattices. Order 30, 847–858 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czédli, G., Grätzer, G.: Planar semimodular lattices and their diagrams. Chapter 3 in: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications. Birkhäuser, Basel (2014)

  11. Czédli G., Ozsvárt L., Udvari B.: How many ways can two composition series intersect?. Discrete Mathematics 312, 3523–3536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czédli G., Schmidt E.T.: How to derive finite semimodular lattices from distributive lattices?. Acta Math. Hungar. 121, 277–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czédli G., Schmidt E.T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices. Algebra Universalis 66, 69–79 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Czédli G., Schmidt E.T.: Slim semimodular lattices. I. A visual approach. Order 29, 481–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Czédli G., Schmidt E.T.: Slim semimodular lattices. II. A description by patchwork systems. Order 30, 689–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Czédli G., Schmidt E.T.: Composition series in groups and the structure of slim semimodular lattices. Acta Sci Math. (Szeged) 79, 369–390 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

  18. Grätzer G.: Congruences and prime perspectivities in finite lattices. Algebra Universalis 74, 351–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grätzer G., Knapp E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73, 445–462 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Grätzer G., Knapp E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattices. Acta Sci. Math. (Szeged) 75, 29–48 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Grätzer G., Lakser H., Schmidt E.T.: Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41, 290–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grätzer G., Nation J.B.: A new look at the Jordan-Hölder theorem for semimodular lattices. Algebra Universalis 64, 309–311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grätzer G., Schmidt E.T.: An extension theorem for planar semimodular lattices. Periodica Math. Hungarica 69, 32–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kelly D., Rival I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanley R.P.: Supersolvable lattices. Algebra Universalis 2, 197–217 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stern, M.: Semimodular lattices. Theory and applications. In: Encyclopedia of Mathematics and its Applications, vol. 73. Cambridge University Press (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Czédli.

Additional information

Presented by B. Davey.

Dedicated to George Grätzer on his eightieth birthday

This research was supported by the NFSR of Hungary (OTKA), grant number K83219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G. Diagrams and rectangular extensions of planar semimodular lattices. Algebra Univers. 77, 443–498 (2017). https://doi.org/10.1007/s00012-017-0437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0437-0

2010 Mathematics Subject Classification

Key words and phrases

Navigation