Skip to main content

Advertisement

Log in

The inflammasomes: crosstalk between innate immunity and hematology

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

The inflammasome is a cytosolic multi-protein complex responsible for the proteolytic maturation of pro-inflammatory cytokines IL-1ß and IL-18 and of gasdermin-D, which mediates membrane pore formation and the cytokines release, or eventually a lytic cell death known as pyroptosis. Inflammation has long been accepted as a key component of hematologic conditions, either oncological or benign diseases.

Objectives

This study aims to review the current knowledge about the contribution of inflammasome in hematologic diseases. We attempted to depict the participation of specific inflammasome receptors, and the possible cell-specific consequence of complex activation, as well as the use of anti-inflammasome therapies.

Methods

We performed a keyword-based search in public databases (Pubmed.gov, ClinicalTrials.gov.).

Conclusion

Different blood cells variably express inflammasome components. Considering the immunosuppression associated with both the disease and the treatment of some hematologic diseases, and a microenvironment that allows neoplastic cell proliferation, inflammasomes could be a link between innate immunity and disease progression, as well as an interesting therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol. 2020;107(3):379–91. https://doi.org/10.1002/JLB.3MIR0919-191R.

    Article  CAS  PubMed  Google Scholar 

  2. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases, and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. https://doi.org/10.1111/imr.12534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shaw PJ, McDermott MF, Kanneganti TD. Inflammasomes and autoimmunity. Trends Mol Med. 2011;17(2):57–64. https://doi.org/10.1016/j.molmed.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  4. Tong Y, Wang Z, Cai L, Lin L, Liu J, Cheng J. NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. Oxid Med Cell Longev. 2020;14(2020):4293206. https://doi.org/10.1155/2020/4293206.

    Article  CAS  Google Scholar 

  5. Barra NG, Henriksbo BD, Anhê FF, Schertzer JD. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J. 2020;477(6):1089–107. https://doi.org/10.1042/BCJ20190472.

    Article  CAS  PubMed  Google Scholar 

  6. Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol. 2020;13(1):100. https://doi.org/10.1186/s13045-020-00936-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M, O’Donnell JA, McArthur K, Baldwin TM, Chevrier S, Nowell CJ, Cengia LH, Henley KJ, Collinge JE, Kastner DL, Feigenbaum L, Hilton DJ, Alexander WS, Kile BT, Croker BA. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity. 2012;37(6):1009–23. https://doi.org/10.1016/j.immuni.2012.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodríguez-Ruiz L, Lozano-Gil JM, Lachaud C, Mesa-Del-Castillo P, Cayuela ML, García-Moreno D, Pérez-Oliva AB, Mulero V. Zebrafish Models to Study inflammasome-mediated regulation of hematopoiesis. Trends Immunol. 2020;41(12):1116–27. https://doi.org/10.1016/j.it.2020.10.006.

    Article  CAS  PubMed  Google Scholar 

  9. Martinon F, Burns K, Tschopp J. 2002 The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26. https://doi.org/10.1016/s1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8. https://doi.org/10.1038/nature18629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035–52. https://doi.org/10.1016/j.it.2019.09.005.

    Article  CAS  PubMed  Google Scholar 

  12. Sutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009;130(1):2–6. https://doi.org/10.1016/j.clim.2008.08.011.

    Article  CAS  PubMed  Google Scholar 

  13. Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281(1):99–114. https://doi.org/10.1111/imr.12618.

    Article  CAS  PubMed  Google Scholar 

  14. Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. Diverse viral proteases activate the NLRP1 inflammasome. Elife. 2021;10: e60609. https://doi.org/10.7554/eLife.60609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–41. https://doi.org/10.1038/nature13449.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Shi P, Wang Y, et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol. 2019;11(6):496–508. https://doi.org/10.1093/jmcb/mjy056.

    Article  CAS  PubMed  Google Scholar 

  17. Ito M, Shichita T, Okada M, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6:7360. https://doi.org/10.1038/ncomms8360.

    Article  PubMed  Google Scholar 

  18. Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M, Kanneganti TD. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46. https://doi.org/10.4049/jimmunol.1302839.

    Article  CAS  PubMed  Google Scholar 

  19. Chui AJ, Griswold AR, Taabazuing CY, et al. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020;33(2): 108264. https://doi.org/10.1016/j.celrep.2020.108264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le HT, Harton JA. Pyrin- and CARD-only proteins as regulators of NLR functions. Front Immunol. 2013;17(4):275. https://doi.org/10.3389/fimmu.2013.00275.

    Article  CAS  Google Scholar 

  21. Papatheodorou I, Moreno P, Manning J, Fuentes AMP, George N, Fexova S, Fonseca NA, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 2020;48(D1):D77–83. https://doi.org/10.1093/nar/gkx1158.

    Article  CAS  PubMed  Google Scholar 

  22. Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H, Yang XF. Inflammasomes are differentially expressed in cardiovascualr and other tissues. Int J Immunopathol Pharmacol. 2009;22(2):311–22. https://doi.org/10.1177/039463200902200208.

    Article  CAS  PubMed  Google Scholar 

  23. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35. https://doi.org/10.1146/annurev-immunol-031210-101405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013;140(12):2463–7. https://doi.org/10.1242/dev.083147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ratajczak MZ, Adamiak M, Thapa A, Bujko K, Brzezniakiewicz-Janus K, Lenkiewicz AM. NLRP3 inflammasome couples purinergic signaling with activation of the complement cascade for the optimal release of cells from bone marrow. Leukemia. 2019;33(4):815–25. https://doi.org/10.1038/s41375-019-0436-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong F, Chen Y, Gao H, Shi J, Lu W, Ju W, Fu C, Qiao J, Xu K, Zeng L. NLRP1 in bone marrow microenvironment controls hematopoietic reconstitution after transplantation. Transplant Cell Ther. 2021;S2666–6367(21):01098–108. https://doi.org/10.1016/j.jtct.2021.07.016.

    Article  CAS  Google Scholar 

  27. Hu B, Jin CC, Li HB, Tong JY, Ouyang XS, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C, et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science. 2016;354:765–8. https://doi.org/10.1126/science.aaf7532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the maintenance of hematopoietic homeostasis: new perspectives and opportunities. Molecules. 2021;26:309. https://doi.org/10.3390/molecules26020309.

    Article  CAS  PubMed Central  Google Scholar 

  29. Lenkiewicz AM, Adamiak M, Thapa A, Bujko K, Pedziwiatr D, Abdel-Latif AK, Kucia M, Ratajczak J, Ratajczak MZ. The Nlrp3 inflammasome orchestrates mobilization of bone marrow-residing stem cells into peripheral blood. Stem Cell Rev Rep. 2019;15(3):391–403. https://doi.org/10.1007/s12015-019-09890-7.

    Article  CAS  PubMed  Google Scholar 

  30. Espinoza JL, Kamio K, Lam VQ, Takami A. The impact of NLRP3 activation on hematopoietic stem cell transplantation. Int J Mol Sci. 2021;22(21):11845. https://doi.org/10.3390/ijms222111845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bozza MT, Jeney V. Pro-inflammatory Actions of heme and other hemoglobin-derived DAMPs. Front Immunol. 2020;11:1323. https://doi.org/10.3389/fimmu.2020.01323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vogel S, Arora T, Wang X, Mendelsohn L, Nichols J, Allen D, Shet AS, Combs CA, Quezado ZMN, Thein SL. The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv. 2018;2(20):2672–80. https://doi.org/10.1182/bloodadvances.2018021709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rolfes V, Ribeiro LS, Hawwari I, Böttcher L, Rosero N, Maasewerd S, Santos MLS, Próchnicki T, Silva CMS, Wanderley CWS, Rothe M, Schmidt SV, Stunden HJ, Bertheloot D, Rivas MN, Fontes CJ, Carvalho LH, Cunha FQ, Latz E, Arditi M, Franklin BS. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep. 2020;31(6): 107615. https://doi.org/10.1016/j.celrep.2020.107615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta N, Sahu A, Prabhakar A, et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763–8. https://doi.org/10.1073/pnas.1620458114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020;11(9):776. https://doi.org/10.1038/s41419-020-02985-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh A, Uzun G, Bakchoul T. Primary immune thrombocytopenia: novel insights into pathophysiology and disease management. J Clin Med. 2021;10(4):789. https://doi.org/10.3390/jcm10040789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Liu Y, Li G, Feng Q, Hou M, Peng J. Reduced intracellular antioxidant capacity in platelets contributes to primary immune thrombocytopenia via ROS-NLRP3-caspase-1 pathway. Thromb Res. 2021;199:1–9. https://doi.org/10.1016/j.thromres.2020.12.008.

    Article  CAS  PubMed  Google Scholar 

  38. Lv Y, Ruan G, Liu Y, Cui D, Zhao Y, Yan C, Lv M, Xu D, Mao Y, Cao J, Jin J, Xie J. Aberrant expression of NLRP3, NLRC4 and NLRP6 inflammasomes in patients with primary immune thrombocytopenia. Thromb Res. 2019;176:101–3. https://doi.org/10.1016/j.thromres.2019.02.020.

    Article  CAS  PubMed  Google Scholar 

  39. Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive oxygen species in venous thrombosis. Int J Mol Sci. 2020;21(6):1918. https://doi.org/10.3390/ijms21061918.

    Article  CAS  PubMed Central  Google Scholar 

  40. Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood. 2017;130(16):1795–9. https://doi.org/10.1182/blood-2017-03-745349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Campos J, Ponomaryov T, De Prendergast A, et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021;5(9):2319–24. https://doi.org/10.1182/bloodadvances.2020003377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Cui J, Zhang G, et al. Inflammasome activation promotes venous thrombosis through pyroptosis. Blood Adv. 2021;5(12):2619–23. https://doi.org/10.1182/bloodadvances.2020003041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gomes T, Várady CBS, Lourenço AL, Mizurini DM, Rondon AMR, Leal AC, Gonçalves BS, Bou-Habib DC, Medei E, Monteiro RQ. IL-1β blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Front Immunol. 2019;4(10):2088. https://doi.org/10.3389/fimmu.2019.02088.

    Article  CAS  Google Scholar 

  44. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45. https://doi.org/10.1038/nri3345.

    Article  CAS  PubMed  Google Scholar 

  45. Nader E, Romana M, Connes P. The red blood cell-inflammation vicious circle in sickle cell disease. Front Immunol. 2020;13(11):454. https://doi.org/10.3389/fimmu.2020.00454.

    Article  CAS  Google Scholar 

  46. de Freitas DV, Leal VNC, Fernandes FP, Souza CRL, Figueiredo MS, Pontillo A. Genetic contribution and functional impairment of inflammasome in sickle cell disease. Cytokine. 2022;149: 155717. https://doi.org/10.1016/j.cyto.2021.155717.

    Article  CAS  Google Scholar 

  47. Vats R, Brzoska T, Bennewitz MF, Jimenez MA, Pradhan-Sundd T, Tutuncuoglu E, Jonassaint J, Gutierrez E, Watkins SC, Shiva S, Scott MJ, Morelli AE, Neal MD, Kato GJ, Gladwin MT, Sundd P. Platelet extracellular vesicles drive inflammasome-IL-1β-dependent lung injury in sickle cell disease. Am J Respir Crit Care Med. 2020;201(1):33–46. https://doi.org/10.1164/rccm.201807-1370OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm Res. 2016;65(9):665–78. https://doi.org/10.1007/s00011-016-0955-9.

    Article  CAS  PubMed  Google Scholar 

  49. Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19(4):197–214. https://doi.org/10.1038/s41568-019-0123-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ratajczak MZ, Bujko K, Cymer M, Thapa A, Adamiak M, Ratajczak J, Abdel-Latif AK, Kucia M. The Nlrp3 inflammasome as a “rising star” in studies of normal and malignant hematopoiesis. Leukemia. 2020;34(6):1512–23. https://doi.org/10.1038/s41375-020-0827-8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  52. Shroff GS, Truong MT, Carter BW, Benveniste MF, Kanagal-Shamanna R, Rauch G, Viswanathan C, Boddu PC, Daver N, Wu CC. Leukemic involvement in the thorax. Radiographics. 2019;39(1):44–61. https://doi.org/10.1148/rg.2019180069.

    Article  PubMed  Google Scholar 

  53. Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009;113:4179–87. https://doi.org/10.1182/blood-2008-07-172007.

    Article  CAS  PubMed  Google Scholar 

  54. McReynolds LJ, Savage SA. Pediatric leukemia susceptibility disorders: manifestations and management. Hematol Am Soc Hematol Educ Program. 2017;2017(1):242–50. https://doi.org/10.1182/asheducation-2017.1.242.

    Article  Google Scholar 

  55. Fadeel B, Garwicz D, Carlsson G, Sandstedt B, Nordenskjöld M. Kostmann disease and other forms of severe congenital neutropenia. Acta Paediatr. 2021;110(11):2912–20. https://doi.org/10.1111/apa.16005.

    Article  PubMed  Google Scholar 

  56. Gluzman DF, Sklyarenko LM, Zavelevich MP, Koval SV, Ivanivska TS, Rodionova NK. Overview on association of different types of leukemias with radiation exposure. Exp Oncol. 2015;37(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  57. Poynter JN, Richardson M, Blair CK, Roesler MA, Hirsch BA, Nguyen P, Cioc A, Warlick E, Cerhan JR, Ross JA. Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes. Cancer Epidemiol. 2016;40:134–40. https://doi.org/10.1016/j.canep.2015.12.005.

    Article  PubMed  Google Scholar 

  58. Sandler DP, Shore DL, Anderson JR, Davey FR, Arthur D, Mayer RJ, Silver RT, Weiss RB, Moore JO, Schiffer CA, et al. Cigarette smoking and risk of acute leukemia: associations with morphology and cytogenetic abnormalities in bone marrow. J Natl Cancer Inst. 1993;85(24):1994–2003. https://doi.org/10.1093/jnci/85.24.1994.

    Article  CAS  PubMed  Google Scholar 

  59. Wei J, Wang H, Wang H, Wang B, Meng L, Xin Y, Jiang X. The role of NLRP3 inflammasome activation in radiation damage. Biomed Pharmacother. 2019;118: 109217. https://doi.org/10.1016/j.biopha.2019.109217.

    Article  CAS  PubMed  Google Scholar 

  60. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88. https://doi.org/10.1038/nm.2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buscetta M, Di Vincenzo S, Miele M, Badami E, Pace E, Cipollina C. Cigarette smoke inhibits the NLRP3 inflammasome and leads to caspase-1 activation via the TLR4-TRIF-caspase-8 axis in human macrophages. FASEB J. 2020;34(1):1819–32. https://doi.org/10.1096/fj.201901239R.

    Article  CAS  PubMed  Google Scholar 

  62. Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 inflammasome promotes the progression of acute myeloid leukemia Via il-1β pathway. front immunol. 2021;15(12): 661939. https://doi.org/10.3389/fimmu.2021.661939.

    Article  CAS  Google Scholar 

  63. Hamarsheh S, Osswald L, Saller BS, Unger S, De Feo D, Vinnakota JM, Konantz M, Uhl FM, Becker H, Lübbert M, Shoumariyeh K, Schürch C, Andrieux G, Venhoff N, Schmitt-Graeff A, Duquesne S, Pfeifer D, Cooper MA, Lengerke C, Boerries M, Duyster J, Niemeyer CM, Erlacher M, Blazar BR, Becher B, Groß O, Brummer T, Zeiser R. Oncogenic KrasG12D causes myeloproliferation via NLRP3 inflammasome activation. Nat Commun. 2020;11(1):1659. https://doi.org/10.1038/s41467-020-15497-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Q, Hua M, Zhang C, Wang R, Liu J, Yang X, Han F, Hou M, Ma D. NLRP3-activated bone marrow dendritic cells play antileukemic roles via IL-1β/Th1/IFN-γ in acute myeloid leukemia. Cancer Lett. 2021;520:109–20. https://doi.org/10.1016/j.canlet.2021.06.014.

    Article  CAS  PubMed  Google Scholar 

  65. Wang H, Hua M, Wang S, Yu J, Chen C, Zhao X, Zhang C, Zhong C, Wang R, He N, Hou M, Ma D. Genetic polymorphisms of IL-18 rs1946518 and IL-1β rs16944 are associated with prognosis and survival of acute myeloid leukemia. Inflamm Res. 2017;66(3):249–58. https://doi.org/10.1007/s00011-016-1012-4.

    Article  CAS  PubMed  Google Scholar 

  66. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6): e577. https://doi.org/10.1038/bcj.2017.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uzan B, Poglio S, Gerby B, et al. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Mol Med. 2014;6(6):821–34. https://doi.org/10.1002/emmm.201303286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang C, Han F, Yu J, Hu X, Hua M, Zhong C, Wang R, Zhao X, Shi Y, Ji C, Ma D. Investigation of NF-κB-94ins/del ATTG and CARD8 (rs2043211) Gene Polymorphism in Acute Lymphoblastic Leukemia. Front Endocrinol (Lausanne). 2019;2(10):501. https://doi.org/10.3389/fendo.2019.00501.

    Article  Google Scholar 

  70. Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past, present and future. Cells. 2021;10(1):117. https://doi.org/10.3390/cells10010117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang B, Chu S, Agarwal P, Campbell VL, Hopcroft L, Jørgensen HG, Lin A, Gaal K, Holyoake TL, Bhatia R. Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor–treated CML stem cells. Blood. 2016;128:2671–82. https://doi.org/10.1182/blood-2015-11-679928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1α/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol. 2018;101:377–85. https://doi.org/10.1016/j.molimm.2018.07.002.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang A, Yu J, Yan S, Zhao X, Chen C, Zhou Y, Zhao X, Hua M, Wang R, Zhang C, Zhong C, He N, Ji C, Ma D. The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia. Hum Immunol. 2018;79(1):57–62. https://doi.org/10.1016/j.humimm.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  74. Haseeb M, Anwar MA, Choi S. Molecular Interactions between innate and adaptive immune cells in chronic lymphocytic leukemia and their therapeutic implications. Front Immunol. 2018;26(9):2720. https://doi.org/10.3389/fimmu.2018.02720.

    Article  CAS  Google Scholar 

  75. Salaro E, Rambaldi A, Falzoni S, Amoroso FS, Franceschini A, Sarti AC, Bonora M, Cavazzini F, Rigolin GM, Ciccone M, Audrito V, Deaglio S, Pelegrin P, Pinton P, Cuneo A, Di Virgilio F. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Sci Rep. 2016;25(6):26280. https://doi.org/10.1038/srep26280.

    Article  CAS  Google Scholar 

  76. de Leval L, Jaffe ES. Lymphoma classification. Cancer J. 2020;26(3):176–85. https://doi.org/10.1097/PPO.0000000000000451.

    Article  PubMed  Google Scholar 

  77. Zhao X, Zhang C, Hua M, Wang R, Zhong C, Yu J, Han F, He N, Zhao Y, Liu G, Zheng N, Ji C, Ma D. NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma. Oncotarget. 2017;8(65):108571–83. https://doi.org/10.18632/oncotarget.21010.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huanosta-Murillo E, Alcántara-Hernández M, Hernández-Rico B, et al. NLRP3 regulates IL-4 expression in TOX+ CD4+ T cells of cutaneous T cell lymphoma to potentially promote disease progression. Front Immunol. 2021;12:668369. https://doi.org/10.3389/fimmu.2021.668369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruchard M, Rebé C, Derangère V, Togbé D, Ryffel B, Boidot R, Humblin E, Hamman A, Chalmin F, Berger H, Chevriaux A, Limagne E, Apetoh L, Végran F, Ghiringhelli F. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16(8):859–70. https://doi.org/10.1038/ni.3202.

    Article  CAS  PubMed  Google Scholar 

  80. Lu F, Zhao Y, Pang Y, Ji M, Sun Y, Wang H, Zou J, Wang Y, Li G, Sun T, Li J, Ma D, Ye J, Ji C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett. 2021;28(497):178–89. https://doi.org/10.1016/j.canlet.2020.10.024.

    Article  CAS  Google Scholar 

  81. Baldini C, Santini E, Rossi C, Donati V, Solini A. The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin’s lymphoma in Sjogren’s syndrome: a prospective, observational, single-centre study. J Intern Med. 2017;282(2):175–86. https://doi.org/10.1111/joim.12631.

    Article  CAS  PubMed  Google Scholar 

  82. Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B. Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol. 1998;103(4):1152–60. https://doi.org/10.1046/j.1365-2141.1998.01101.x.

    Article  CAS  PubMed  Google Scholar 

  83. Lust JA, Lacy MQ, Zeldenrust SR, Witzig TE, Moon-Tasson LL, Dinarello CA, Donovan KA. Reduction in C-reactive protein indicates successful targeting of the IL-1/IL-6 axis resulting in improved survival in early stage multiple myeloma. Am J Hematol. 2016;91(6):571–4. https://doi.org/10.1002/ajh.24352.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao X, Hua M, Yan S, Yu J, Han F, Zhong C, Wang R, Zhang C, Hou M, Ma D. The genetic polymorphisms of NLRP3 Inflammasome associated with T helper cells in patients with multiple myeloma. J Immunol Res. 2018;23(2018):7569809. https://doi.org/10.1155/2018/7569809.

    Article  CAS  Google Scholar 

  85. Li Y, Li N, Yan Z, Li H, Chen L, Zhang Z, Fan G, Xu K, Li Z. Dysregulation of the NLRP3 inflammasome complex and related cytokines in patients with multiple myeloma. Hematology. 2016;21(3):144–51. https://doi.org/10.1179/1607845415Y.0000000029.

    Article  CAS  PubMed  Google Scholar 

  86. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358–74. https://doi.org/10.1056/NEJMra1904794.

    Article  CAS  PubMed  Google Scholar 

  87. Basiorka AA, McGraw KL, Eksioglu EA, Chen X, Johnson J, Zhang L, Zhang Q, Irvine BA, Cluzeau T, Sallman DA, Padron E, Komrokji R, Sokol L, Coll RC, Robertson AA, Cooper MA, Cleveland JL, O’Neill LA, Wei S, List AF. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood. 2016;128(25):2960–75. https://doi.org/10.1182/blood-2016-07-730556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sallman DA, Cluzeau T, Basiorka AA, List A. Unraveling the pathogenesis of MDS: the NLRP3 inflammasome and pyroptosis drive the MDS phenotype. Front Oncol. 2016;6:151. https://doi.org/10.3389/fonc.2016.00151.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yin C, He N, Li P, Zhang C, Yu J, Hua M, Ji C, Ma D. Polymorphisms of Interlukin-1β rs16944 confer susceptibility to myelodysplastic syndromes. Life Sci. 2016;15(165):109–12. https://doi.org/10.1016/j.lfs.2016.09.019.

    Article  CAS  Google Scholar 

  90. Braun LM, Zeiser R. Immunotherapy in myeloproliferative diseases. Cells. 2020;9(6):1559. https://doi.org/10.3390/cells9061559.

    Article  CAS  PubMed Central  Google Scholar 

  91. Battista Di, Valeria, et al. Genetics and pathogenetic role of inflammasomes in Philadelphia negative chronic myeloproliferative neoplasms: a narrative review. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020561.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liew EL, Araki M, Hironaka Y, et al. Identification of AIM2 as a downstream target of JAK2V617F. Exp Hematol Oncol. 2016;5:2. https://doi.org/10.1186/s40164-016-0032-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Höchsmann B, Murakami Y, Osato M, et al. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest. 2019;129(12):5123–36. https://doi.org/10.1172/JCI123501.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Brodsky RA. Paroxysmal nocturnal hemoglobinuria without GPI-anchor deficiency. J Clin Invest. 2019;129(12):5074–6. https://doi.org/10.1172/JCI131647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Passweg JR, Baldomero H, Basak GW, Chabannon C, Corbacioglu S, Duarte R, Kuball J, Lankester A, Montoto S, de Latour RP, Snowden JA, Styczynski J, Yakoub-Agha I, Arat M, Mohty M, Kröger N. European Society for Blood and Marrow Transplantation (EBMT) The EBMT activity survey report 2017: a focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transpl. 2019;54(10):1575–85. https://doi.org/10.1038/s41409-019-0465-9.

    Article  CAS  Google Scholar 

  96. Xiao J, Wang C, Yao JC, Alippe Y, Yang T, Kress D, Sun K, Kostecki KL, Monahan JB, Veis DJ, Abu-Amer Y, Link DC, Mbalaviele G. Radiation causes tissue damage by dysregulating inflammasome-gasdermin D signaling in both host and transplanted cells. PLoS Biol. 2020;18(8): e3000807. https://doi.org/10.1371/journal.pbio.3000807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Adamiak M, Bujko K, Cymer M, et al. Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells [published correction appears in Leukemia]. Leukemia. 2018;32(9):1920–31. https://doi.org/10.1038/s41375-018-0122-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ringden O, Hassan Z, Karlsson H, Olsson R, Omazic B, Mattsson J, Remberger M. Granulocyte colony-stimulating factor induced acute and chronic graft-versus-host disease. Transplantation. 2010;90(9):1022–9. https://doi.org/10.1097/TP.0b013e3181f585c7.

    Article  CAS  PubMed  Google Scholar 

  99. Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, Rossignol DP, Ferrara JL. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest. 2001;107(12):1581–9. https://doi.org/10.1172/JCI12156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jankovic D, Ganesan J, Bscheider M, et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J Exp Med. 2013;210(10):1899–910. https://doi.org/10.1084/jem.20130084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vanhaver C, van der Bruggen P, Bruger AM. MDSC in mice and men: mechanisms of immunosuppression in cancer. J Clin Med. 2021;10(13):2872. https://doi.org/10.3390/jcm10132872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koehn BH, Saha A, McDonald-Hyman C, Loschi M, Thangavelu G, Ma L, Zaiken M, Dysthe J, Krepps W, Panthera J, Hippen K, Jameson SC, Miller JS, Cooper MA, Farady CJ, Iwawaki T, Ting JP, Serody JS, Murphy WJ, Hill GR, Murray PJ, Bronte V, Munn DH, Zeiser R, Blazar BR. Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. Blood. 2019;134(19):1670–82. https://doi.org/10.1182/blood.2019001950.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Takahashi H, Okayama N, Yamaguchi N, et al. Associations of interactions between NLRP3 SNPs and HLA mismatch with acute and extensive chronic graft-versus-host diseases. Sci Rep. 2017;7(1):13097. https://doi.org/10.1038/s41598-017-13506-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Granell M, Urbano-Ispizua A, Pons A, Aróstegui JI, Gel B, Navarro A, Jansa S, Artells R, Gaya A, Talarn C, Fernández-Avilés F, Martínez C, Rovira M, Carreras E, Rozman C, Juan M, Yagüe J, Montserrat E, Monzó M. Common variants in NLRP2 and NLRP3 genes are strong prognostic factors for the outcome of HLA-identical sibling allogeneic stem cell transplantation. Blood. 2008;112(10):4337–42. https://doi.org/10.1182/blood-2007-12-129247.

    Article  CAS  PubMed  Google Scholar 

  105. Land WG. Transfusion-related acute lung injury: the work of DAMPs. Transfus Med Hemother. 2013;40(1):3–13. https://doi.org/10.1159/000345688.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gibb DR, Calabro S, Liu D, Tormey CA, Spitalnik SL, Zimring JC, Hendrickson JE, Hod EA, Eisenbarth SC. The Nlrp3 inflammasome does not regulate alloimmunization to transfused red blood cells in mice. EBioMedicine. 2016;9:77–86. https://doi.org/10.1016/j.ebiom.2016.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chong F, Rooks KM, Flower RL, Dean MM. Soluble mediators in packed red blood cells augment lipopolysaccharide-induced monocyte interleukin-1β production. Vox Sang. 2020;115(7):562–9. https://doi.org/10.1111/vox.12915.

    Article  CAS  PubMed  Google Scholar 

  108. Sippert EÂ, Visentainer JE, Alves HV, Rodrigues C, Gilli SC, Addas-Carvalho M, Saad ST, Costa FF, Castilho L. Red blood cell alloimmunization in patients with sickle cell disease: correlation with HLA and cytokine gene polymorphisms. Transfusion. 2017;57(2):379–89. https://doi.org/10.1111/trf.13920.

    Article  CAS  PubMed  Google Scholar 

  109. Liu D, Xu X, Dai Y, et al. Blockade of AIM2 inflammasome or α1-AR ameliorates IL-1β release and macrophagemediated immunosuppression induced by CAR-T treatment. J Immunother Cancer. 2021;9: e001466. https://doi.org/10.1136/jitc-2020-001466.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Weber ANR. Targeting the NLRP3 Inflammasome via BTK. Front Cell Dev Biol. 2021;25(9): 630479. https://doi.org/10.3389/fcell.2021.630479.

    Article  Google Scholar 

Download references

Funding

VFD-Conselho Nacional de desenvolvimento científico e tecnológico (CNPq)- Fellowship (162577/2015–0). VNCL-Fundação de Amparo à pesquisa do estado de São Paulo (FAPESP)- Postdoctoral Fellowship (2020/15323–3). AP-Conselho Nacional de desenvolvimento científico e tecnológico (CNPq)-Excellence program (302206/2019–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria de Freitas Dutra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas Dutra, V., Leal, V.N.C. & Pontillo, A. The inflammasomes: crosstalk between innate immunity and hematology. Inflamm. Res. 71, 1403–1416 (2022). https://doi.org/10.1007/s00011-022-01646-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01646-3

Keywords

Navigation