Skip to main content

Advertisement

Log in

MicroRNA-181c-5p modulates phagocytosis efficiency in bone marrow-derived macrophages

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Phagocytosis and clearance of apoptotic cells are essential for inflammation resolution, efficient wound healing, and tissue homeostasis. MicroRNAs are critical modulators of macrophage polarization and function. The current study aimed to investigate the role of miR-181c-5p in macrophage phagocytosis.

Materials and methods

miR-181c-5p was identified as a potential candidate in microRNA screening of RAW264.7 macrophages fed with apoptotic cells. To investigate the role of miR-181c-5p in phagocytosis, the expression of miR-181c-5p was assessed in phagocyting bone marrow-derived macrophages. Phagocytosis efficiency was measured by fluorescence microscopy. Gain- and loss-of-function studies were performed using miR-181c-5p-specific mimic and inhibitor. The expression of the phagocytosis-associated genes and proteins of interest was evaluated by RT2 profiler PCR array and western blotting, respectively.

Results

miR-181c-5p expression was significantly upregulated in the phagocyting macrophages. Furthermore, mimic-induced overexpression of miR-181c-5p resulted in the increased phagocytic ability of macrophages. Moreover, overexpression of miR-181c-5p resulted in upregulation of WAVE-2 in phagocyting macrophages, suggesting that miR-181c-5p may regulate cytoskeletal arrangement during macrophage phagocytosis.

Conclusion

Altogether, our data provide a novel function of miR-181c-5p in macrophage biology and suggest that targeting macrophage miR-181c-5p in injured tissues might improve clearance of dead cells and lead to efficient inflammation resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henson PM. Cell removal: efferocytosis. Annu Rev Cell Dev Biol. 2017;33:127–44.

    Article  CAS  PubMed  Google Scholar 

  2. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18:579–87.

    Article  CAS  PubMed  Google Scholar 

  3. Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol. 2017;7:191.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94.

    Article  CAS  PubMed  Google Scholar 

  5. Briassouli P, Komissarova EV, Clancy RM, Buyon JP. Role of the urokinase plasminogen activator receptor in mediating impaired efferocytosis of anti-SSA/Ro-bound apoptotic cardiocytes: implications in the pathogenesis of congenital heart block. Circ Res. 2010;107:374–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, et al. Efferocytosis and outside-in signaling by cardiac phagocytes. Links to repair, cellular programming, and intercellular crosstalk in heart. Front Immunol. 2017;8:1428.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies SP, Reynolds GM, Stamataki Z. Clearance of apoptotic cells by tissue epithelia: a putative role for hepatocytes in liver efferocytosis. Front Immunol. 2018;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kimani SG, Geng K, Kasikara C, Kumar S, Sriram G, Wu Y, et al. Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity. Front Immunol. 2014;5:566.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Notley CA, Jordan CK, McGovern JL, Brown MA, Ehrenstein MR. DNA methylation governs the dynamic regulation of inflammation by apoptotic cells during efferocytosis. Sci Rep. 2017;7:42204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Calianese D, Birge RB. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol Rev. 2017;280:149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL. Modulation of macrophage efferocytosis in inflammation. Front Immunol. 2011;2:57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  CAS  PubMed  Google Scholar 

  13. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016;17:719.

    Article  CAS  Google Scholar 

  14. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522.

    Article  CAS  PubMed  Google Scholar 

  15. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203.

    Article  CAS  PubMed  Google Scholar 

  16. Flemming A. Heart failure: targeting miRNA pathology in heart disease. Nat Rev Drug Discov. 2014;13:336.

    Article  PubMed  Google Scholar 

  17. Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, et al. MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer’s disease. Alzheimer’s Dement. 2016;3:7–17.

    Article  Google Scholar 

  18. Suresh Babu S, Thandavarayan RA, Joladarashi D, Jeyabal P, Krishnamurthy S, Bhimaraj A, et al. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci Rep. 2016;6:36207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Lukiw W. TREM2 signaling, miRNA-34a and the extinction of phagocytosis. Front Cell Neurosci. 2013;7:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy S. miRNA in macrophage development and function. Antioxid Redox Signal. 2016;25:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in macrophage activation. Front Immunol. 2019;10:799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naqvi AR, Fordham JB, Nares S. miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. J Immunol. 2015;194:1916–27.

    Article  CAS  PubMed  Google Scholar 

  23. Moon HG, Yang J, Zheng Y, Jin Y. miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J Immunol. 2014;193:4558–67.

    Article  CAS  PubMed  Google Scholar 

  24. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 2007;104:1604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31:220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ranjan R, Lee YG, Karpurapu M, Syed MA, Chung S, Deng J, et al. p47phox and reactive oxygen species production modulate expression of microRNA-451 in macrophages. Free Radic Res. 2015;49:25–34.

    Article  CAS  PubMed  Google Scholar 

  28. Sun X, Sit A, Feinberg MW. Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc Med. 2014;24:105–12.

    Article  CAS  PubMed  Google Scholar 

  29. Yamazaki N, Koga Y, Taniguchi H, Kojima M, Kanemitsu Y, Saito N, et al. High expression of miR-181c as a predictive marker of recurrence in stage II colorectal cancer. Oncotarget. 2017;8:6970–83.

    Article  PubMed  Google Scholar 

  30. Mori F, Sacconi A, Canu V, Ganci F, Novello M, Anelli V, et al. miR-181c associates with tumor relapse of high grade osteosarcoma. Oncotarget. 2015;6:13946–61.

    Article  PubMed  Google Scholar 

  31. Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, et al. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget. 2016;7:60074–86.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008;Chapter 14:Unit 14.1.

    PubMed  Google Scholar 

  33. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, et al. Enhanced cardiac regenerative ability of stem cells after ischemia–reperfusion injury: role of human CD34+ cells deficient in microRNA-377. J Am Coll Cardiol. 2015;66:2214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, et al. MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun. 2016;471:423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis. 2019;10:782.

    Article  PubMed  PubMed Central  Google Scholar 

  37. MacLeod AS, Mansbridge JN. The innate immune system in acute and chronic wounds. Adv Wound Care (New Rochelle). 2016;5:65–78.

    Article  Google Scholar 

  38. Kawano M, Nagata S. Efferocytosis and autoimmune disease. Int Immunol. 2018;30:551–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yurdagul A Jr, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front Cardiovasc Med. 2018;4:86–86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-181c prevents apoptosis by targeting of FAS receptor in Ewing’s sarcoma cells. Cancer Cell Int. 2018;18:37.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Zhang G, Xiong H, Zhang Y, Ding G, Ge J. miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk. Sci Rep. 2021;11:16582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110:1596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma J, Lin X, Chen C, Li S, Zhang S, Chen Z, et al. Circulating miR-181c-5p and miR-497–5p are potential biomarkers for prognosis and diagnosis of osteoporosis. J Clin Endocrinol Metab. 2020;105:dgz300.

    Article  PubMed  Google Scholar 

  44. Li N, Jiang D, He Q, He F, Li Y, Deng C, et al. microRNA-181c-5p promotes the formation of insulin-producing cells from human induced pluripotent stem cells by targeting smad7 and TGIF2. Cell Death Dis. 2020;11:462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li M, Hu J, Peng Y, Li J, Ren R. CircPTK2-miR-181c-5p-HMGB1: a new regulatory pathway for microglia activation and hippocampal neuronal apoptosis induced by sepsis. Mol Med. 2021;27:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev. 2013;256:222–39.

    Article  CAS  PubMed  Google Scholar 

  48. Ge L, Cai Y, Ying F, Liu H, Zhang D, He Y, et al. miR-181c-5p exacerbates hypoxia/reoxygenation-induced cardiomyocyte apoptosis via targeting PTPN4. Oxid Med Cell Longev. 2019;2019:1957920–1957920.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by National Institutes of Health (NIH) grants HL116729 (to P.K.), HL137411 (to P.K. and J.Z.), American Heart Association Transformational Project Award 19TPA34850100 (to P.K.) and T32 Training Grant T32EB023872 (to J.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work presented in this paper. JH and PK conceptualized and design the study. SS, MP, JH, PD, and SD performed the study. SS, JH, MP, and PK analyzed and organized the data. SS, JH, MP, RK, and PK interpreted the results. SS, JH, and PK were involved in writing manuscript drafts and revisions. RK and JZ provided critical appraisal and conceptual insights during the preparation of the manuscript.

Corresponding author

Correspondence to Prasanna Krishnamurthy.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Henderson, J., Patil, M. et al. MicroRNA-181c-5p modulates phagocytosis efficiency in bone marrow-derived macrophages. Inflamm. Res. 71, 321–330 (2022). https://doi.org/10.1007/s00011-022-01539-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01539-5

Keywords

Navigation