Skip to main content

Advertisement

Log in

Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic ApoE−/− mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim

The severity of atherosclerosis is primarily determined by overall lipid metabolism and the degree of inflammation present within the vessel wall. We evaluated the effects of T-0901317, a liver X receptor agonist, on the atherosclerosis process, and especially on the endothelial function in ApoE−/− mice.

Methods and results

ApoE−/− mice were treated with LXR agonist T-0901317 (1 μmol/L) for 6 weeks. ApoE−/− mice receiving T-0901317 were found to have markedly improved overall serum lipid profiles, albeit increased serum triglycerides. MRI imaging demonstrated that T-0901317 attenuated the atherosclerotic plaque burden in the aorta of ApoE−/− mice. Transmission electron microscopy and immunohistochemistry revealed attenuated ultrastructural changes as well as enhanced expression of the ATP-binding cassette transporter ABCA1. In addition, treatment with the LXR agonist improved the vasomotor function of atherosclerotic arteries, as assessed by KCl/norepinephrine-induced vasoconstrictive and acetylcholine-induced vasorelaxation functional assays. In vitro studies showed increased ABCG1, phospho-Akt and phospho-eNOS expression in ApoE−/− mice aorta endothelial cells (ECs) after T0901317 treatment.

Conclusion

The present study suggest that LXR agonists protect the endothelium against atherosclerotic insults by increasing ABCA1 and ABCG1 expression, and improve the endothelial-dependent vasomotor function probably by promoting Akt and eNOS phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang LN, Zhang LF, Ma J. Simulated microgravity enhances vasoconstrictor responsiveness of rat basilar artery. J Appl Physiol. 2001;90:2296–305.

    Article  PubMed  CAS  Google Scholar 

  3. Sangha DS, Vaziri ND, Ding Y, Purdy RE. Vascular hyporesponsiveness in simulated microgravity: role of nitric oxide-dependent mechanisms. J Appl Physiol. 2000;88:507–17.

    PubMed  CAS  Google Scholar 

  4. Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 2003;536:6–11.

    Article  PubMed  CAS  Google Scholar 

  5. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–45.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14:2831–8.

    Article  PubMed  CAS  Google Scholar 

  7. Fukuchi J, Kokontis JM, Hiipakka RA, Chuu CP, Liao S. Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res. 2004;64:7686–9.

    Article  PubMed  CAS  Google Scholar 

  8. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, et al. The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem. 2005;280:4079–88.

    Article  PubMed  CAS  Google Scholar 

  9. Basciano H, Miller A, Baker C, Naples M, Adeli K. LXRalpha activation perturbs hepatic insulin signaling and stimulates production of apolipoprotein B-containing lipoproteins. Am J Physiol Gastrointest Liver Physiol. 2009;297:G323–32.

    Article  PubMed  CAS  Google Scholar 

  10. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–9.

    Article  PubMed  CAS  Google Scholar 

  11. Chen J, Cui X, Zacharek A, Roberts C, Chopp M. eNOS mediates TO90317 treatment-induced angiogenesis and functional outcome after stroke in mice. Stroke: A Journal of Cerebral Circulation. 2009;40:2532–8.

    Article  CAS  Google Scholar 

  12. Jeong Y, Mangelsdorf DJ. Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med. 2009;41:525–37.

    Article  PubMed  CAS  Google Scholar 

  13. Song C, Hiipakka RA, Liao S. Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors: implications for the development and treatment of atherosclerosis. Steroids. 2001;66:473–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bennett DJ, Cooke AJ, Edwards AS. Non-steroidal LXR agonists; an emerging therapeutic strategy for the treatment of atherosclerosis. Recent Pat Cardiovasc Drug Discov. 2006;1:21–46.

    Article  PubMed  CAS  Google Scholar 

  15. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA. 2002;99:7604–9.

    Article  PubMed  CAS  Google Scholar 

  16. Verschuren L, de Vries-van der Weij J, Zadelaar S, Kleemann R, Kooistra T. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J Lipid Res. 2009;50:301–11.

    Article  PubMed  CAS  Google Scholar 

  17. de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, Cuchel M, Rader DJ, Rothblat GH. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler Thromb Vasc Biol. 2010;30:796–801.

    Article  Google Scholar 

  18. Kratzer A, Buchebner M, Pfeifer T, Becker TM, Uray G, Miyazaki M, et al. Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res. 2009;50:312–26.

    Article  PubMed  CAS  Google Scholar 

  19. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–6.

    Article  PubMed  CAS  Google Scholar 

  20. Hamabe A, Takase B, Uehata A, Kurita A, Ohsuzu F, Tamai S. Impaired endothelium-dependent vasodilation in the brachial artery in variant angina pectoris and the effect of intravenous administration of vitamin C. Am J Cardiol. 2001;87:1154–9.

    Article  PubMed  CAS  Google Scholar 

  21. Schmitz G, Kaminski WE, Porsch-Ozcurumez M, Klucken J, Orso E, Bodzioch M, et al. ATP-binding cassette transporter A1 (ABCA1) in macrophages: a dual function in inflammation and lipid metabolism? Pathobiology. 1999;67:236–40.

    Article  PubMed  CAS  Google Scholar 

  22. Hassan HH, Denis M, Krimbou L, Marcil M, Genest J. Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol. 2006;22(Suppl B):35B–40B.

    Article  PubMed  Google Scholar 

  23. Jaccard E, Widmann C. ABC transporters: hDL-regulated gatekeepers at the endothelial border. Curr Opin Lipidol. 2009;20:526–7.

    Article  PubMed  CAS  Google Scholar 

  24. Curtiss LK, Valenta DT, Hime NJ, Rye KA. What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol. 2006;26:12–9.

    Article  PubMed  CAS  Google Scholar 

  25. Rohrer L, Ohnsorg PM, Lehner M, Landolt F, Rinninger F, von Eckardstein A. High-density lipoprotein transport through aortic endothelial cells involves scavenger receptor BI and ATP-binding cassette transporter G1. Circ Res. 2009;104:1142–50.

    Article  PubMed  CAS  Google Scholar 

  26. Cavelier C, Rohrer L, von Eckardstein A. ATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ Res. 2006;99:1060–6.

    Article  PubMed  CAS  Google Scholar 

  27. Terasaka N, Yu S, Yvan-Charvet L, Wang N, Mzhavia N, Langlois R, et al. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest. 2008;118:3701–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (No. 81090274, No. 81090270, No. 81100579), Innovation Team Start-up Grant by China Department of Education (2010CXTD01) and China's Ministry of Science and Technology 863 Program (2012AA02A603).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Sun, Wenyi Guo or Feng Cao.

Additional information

Responsible Editor: Ikuo Morita.

J. Chen, L. Zhao and D. Sun equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhao, L., Sun, D. et al. Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic ApoE−/− mice. Inflamm. Res. 61, 1299–1307 (2012). https://doi.org/10.1007/s00011-012-0529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0529-4

Keywords

Navigation