Skip to main content
Log in

Groups with a ternary equivalence relation

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We consider in a group \((G,\cdot )\) the ternary relation

$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$

and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure

$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$

We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps

$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$

of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  2. Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  3. Kiechle, H.: Theory of K-Loops. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  4. Karzel, H., Pianta, S.: Binary operations derived from symmetric permutation sets and applications to absolute geometry. Disc. Math. 308, 415–421 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karzel, H.: Kinematic spaces. Ist. Naz. Alta Mat. Symp. Math. XI, 413–439 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Rainich, G.Y.: Ternary relations in geometry and algebra. Mich. Math. J. 1(2), 97–111 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Szmielew, W.: On n-ary equivalence relations and their application to geometry. Instytut Matematyczny Polskiej Akademi Nauk, Warsaw (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Ghahreman Taherian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karzel, H., Taherian, SG. Groups with a ternary equivalence relation. Aequat. Math. 92, 415–423 (2018). https://doi.org/10.1007/s00010-018-0543-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-018-0543-x

Keywords

Mathematics Subject Classification

Navigation