Skip to main content
Log in

Construction of a Few Quantum Mechanical Hamiltonians via Lévy-Leblond Type Linearization: Clifford Momentum, Spinor States and Supersymmetry

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

A number of new Lévy-Leblond type equations admitting four component spinor solutions have been proposed. The pair of linearized equations thus obtained in each case lead to Hamiltonians with characteristic features like L-S coupling and supersymmetry. The relevant momentum operators have often been understood in terms of Clifford algebraic bases producing Schrödinger Hamiltonians with L-S coupling. As for example, Hamiltonians representing Rashba effect or three dimensional harmonic oscillator have been constructed. Moreover the supersymmetric nature of one dimensional harmonic oscillator emerges naturally in this formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aizawa, N., Kuznetsova, Z., Tanaka, H., Toppan, F.: \(Z_2\times Z_2\)-graded Lie symmetries of the Lévi-Leblond equations. Prog. Theor. Exp. Phys. 2016, 123A01 (2016)

    Article  MATH  Google Scholar 

  2. Balantekin, A.B.: Accidental degeneracies and supersymmetric quantum mechanics. Ann. Phys. 164, 277 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bercioux, D., Lucignano, P.: Quantum transport in Rashba spin-orbit materials: a review. Rep. Prog. Phys. 78, 106001 (2015)

    Article  ADS  Google Scholar 

  4. Bychkov, Yu.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 17, 6039 (1984)

    Article  ADS  Google Scholar 

  5. Calogero, F.: Exactly solvable one-dimensional many-body problems. Lett. Nuovo Cimento 13, 411 (1975)

    Article  MathSciNet  Google Scholar 

  6. Camblong, H.E., Epele, L.N., Fanchiotti, H., Garcia, C.A.: Quantum anomaly in molecular physics. Phys. Rev. Lett. 27, 220402 (2001)

    Article  Google Scholar 

  7. Cunha, I.E., Toppan, F.: Three-dimensional superconformal quantum mechanics with \(sl(2\vert 1)\) dynamical symmetry. Phys. Rev. D 100, 125002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Das, A.: Lectures on Quantum Field Theory. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  9. de Montigny, M., Niederle, J., Nikitin, A.G.: Galilei invariant theories: I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions. J. Phys. A Math. Gen. 39, 9365 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deriglazov, A.: Classical Mechanics (Hamiltonian and Lagrangian Formalism). Springer, Berlin (2010)

    MATH  Google Scholar 

  11. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  MATH  Google Scholar 

  12. Gibbons, G.W., Townsend, P.K.: Black holes and Calogero models. Phys. Lett. B 454, 187 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gorsky, A., Nekrasov, N.: Hamiltonian systems of Calogero-type, and two-dimensional Yang–Mills theory. Nucl. Phys. B 414, 213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hagen, C.R.: Arbitrary spin Galilean oscillator. Phys. Lett. A 379, 877 (2015)

    Article  MATH  Google Scholar 

  15. Haldane, F.D.M.: Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981). [Erratum: Phys. Rev. Lett. 48, 569 (1982)]

  16. Haldane, F.D.M.: ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  17. Hladik, J.: Spinors in Physics. Springer Science+Business Media, LLC, Berlin (1999)

    MATH  Google Scholar 

  18. Hua, Wu., Sprung, D.W.L.: Inverse-square potential and the quantum vortex. Phys. Rev. A 49, 4305 (1994)

    Article  ADS  Google Scholar 

  19. Huegele, R., Musielak, Z.E., Fry, J.L.: Fundamental dynamical equations for spinor wavefunctions: I. Lévy-Leblond and Schrödinger equations. J. Phys. A Math. Theor. 45, 145205 (2012)

    Article  ADS  MATH  Google Scholar 

  20. Huegele, R., Musielak, Z.E., Fry, J.L.: Generalized Lévi-Leblond and Schrödinger equations for spinor wavefunctions. Adv. Stud. Theor. Phys. 7, 825 (2013)

    Article  Google Scholar 

  21. Jaramillo, B., Núñez-Yépez, H.N., Salas Brito, A.L.: Critical electric dipole moment in one dimension. Phys. Lett. A 374, 2707 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Lanczos, C.: The Variational Principles of Mechanics. Unabridged Dover (1986) Republication of the fourth edition published by University of Toronto Press, Toronto (1970)

  23. Lévi-Leblond, J.M.: Galilei group and Galilean invariance. In: Loebl, E.M. (ed.) Group Theory and Applications, vol. II. Academic Press, p. 221 (1971)

  24. Lévy-Leblond, J.M.: Electron capture by polar molecules. Phys. Rev. 153, 1 (1967)

    Article  ADS  Google Scholar 

  25. Lévy-Leblond, J.M.: Nonrelativistic particles and wave equations. Commun. Math. Phys. 6, 286 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)

  27. Lu, J.-D.: Electron tunneling in a non-magnetic heterostructure in presence of both Dresselhaus and Rashba spin-orbit terms. Phys. E Low Dimens. Syst. Nanostruct. 43, 142 (2010)

    Article  ADS  Google Scholar 

  28. Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas Brito, A.L.: The two dimensional motion of a particle in an inverse square potential: classical and quantum aspects. J. Math. Phys. 54, 053509 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Niederle, J., Nikitin, A.G.: Galilean equations for massless fields. J. Phys. A Math. Theor. 42, 105207 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sato, M., Fujimoto, S.: Topological phases of noncentrosymmetric superconductors: edge states, Majorana fermions, and non-Abelian statistics. Phys. Rev. B 79, 094504 (2009)

    Article  ADS  Google Scholar 

  31. Schäpers, T.: Semiconductor Spintronics. Walter de Gruyter, Berlin (2016)

    Book  MATH  Google Scholar 

  32. Schwabl, F.: Quantum Mechanics. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  34. Vaz, J., Jr., Rocha, R.D., Jr.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2016)

    Book  MATH  Google Scholar 

  35. Xiao, Y.-C., Deng, W.-J.: Rashba–Dresselhaus double refraction in a two-dimensional electron gas. Superlattices Microstruct. 48, 181 (2010)

    Article  ADS  Google Scholar 

  36. Yan, X., Gu, Q.: Superconductivity in a two-dimensional superconductor with Rashba and Dresselhaus spin–orbit couplings. Solid State Commun. 187, 68 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.C. wishes to thank his colleague Dr. Baisakhi Mal for her valuable assistance in preparing the latex version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Chakraborty.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Debnath, B., Datta, R. et al. Construction of a Few Quantum Mechanical Hamiltonians via Lévy-Leblond Type Linearization: Clifford Momentum, Spinor States and Supersymmetry. Adv. Appl. Clifford Algebras 32, 56 (2022). https://doi.org/10.1007/s00006-022-01239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01239-7

Keywords

Mathematics Subject Classification

Navigation