Skip to main content

Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

The discovery of a light-induced spin transition at cryogenic temperatures in a series of iron(II) spin-crossover compounds in 1984 has had an enormous impact on spin-crossover research. Apart from being an interesting photophysical phenomenon in its own right, it provided the means of studying the dynamics of the intersystem crossing process between the high-spin and the low-spin state in a series of compounds and over a large temperature range. It could thus be firmly established that intersystem crossing in spin-crossover compounds is a tunnelling process, with a limiting low-temperature lifetime below 50 K and a thermally activated region above 100 K. This review begins with an elucidation of the mechanism of the light-induced spin transition, followed by an in depth discussion of the chemical and physical factors, including cooperative effects, governing the lifetimes of the light-induced metastable states.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) Martin RL, White AH (1968) In: Carlin RL (ed) Transition metal chemistry, vol. 4. Marcel Dekker, p. 113; b) Goodwin HA (1976) Coord Chem Rev 18:293; c) Gütlich P (1981) Struct Bond 44:83; d) König E (1987) Progr Inorg Chem 35:527

    Google Scholar 

  2. a) Beattie JK (1988) Adv Inorg Chem 32:1; b) Bacci M (1988) Coord Chem Rev 86:245; c) König E (1991) Struct Bond 76:51; d) Toftlund H (1989) Coord Chem Rev 97:67

    Google Scholar 

  3. a) Lawthers I, McGarvey JJ (1984) J Am Chem Soc 106:4280; b) McGarvey JJ, Lawthers I (1982) J Chem Soc Chem Comm 1982:906

    Google Scholar 

  4. a) Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 13:1; b) Decurtins S, Gütlich P, Hasselbach KM, Spiering H, Hauser A (1985) Inorg Chem 24:2174

    Google Scholar 

  5. a) Hauser A (1986) Chem Phys Lett 124:543; b) Hauser A (1991) J Chem Phys 94:2741

    Google Scholar 

  6. a) Hauser A, Vef A, Adler A (1991) J Chem Phys 95:8710; b) Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  7. a) Hauser A, Gütlich P, Spiering H (1986) Inorg Chem 25:4245; b) Hauser A, Jeftic J, Romstedt H, Hinek R, Spiering H (1999) Coord Chem Rev 190/192:471

    Google Scholar 

  8. Hauser A. This series (ligand field theoretical considerations)

    Google Scholar 

  9. a) Lever ABP, Dodsworth E (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol II. Wiley, New York, p 227; b) Endicott JF (2001) In: Balzani V (ed) Electron transfer in chemistry, vol 1. Wiley, New York, p 238

    Google Scholar 

  10. Sugano S, Tanabe Y, Kamimura H (1970) Pure and applied physics, vol 33. Academic Press, New York

    Google Scholar 

  11. a) Franke PL, Haasnot JG, Zuur AP (1982) Inorg Chim Acta 59:5; b) Müller EW, Ensling J, Spiering H, Gütlich P (1983) Inorg Chem 22:2074

    Google Scholar 

  12. Gütlich P, Hauser A, Spiering A (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  13. a) Wiehl L (1993) Acta Cryst B49:289; b) Kusz J, Spiering H, Gütlich P (2000) J Appl Crystallography 33:201

    Google Scholar 

  14. Jeftic J, Hauser A (1997) J Phys Chem B 101:10,262

    Google Scholar 

  15. Romstedt H, Hauser A, Spiering H (1998) J Phys Chem Solids 59:265

    Google Scholar 

  16. Vef A, Manthe U, Gütlich P, Hauser A (1994) J Chem Phys 101:9326

    Google Scholar 

  17. a) Köppen H, Müller EW, Köhler CP, Spiering H, Meissner E, Gütlich P (1982) Chem Phys Lett 91:348; b) Jakobi R, Spiering H, Gütlich P (1992) J Phys Chem Solids 53:267

    Google Scholar 

  18. a) Kohlhaas T, Spiering H, Gütlich P (1997) Z Phys B 102:455; b) Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmas C, Kusz J, Gütlich P (1999) Coord Chem Rev 190/192:629

    Google Scholar 

  19. Haasnot JG. This series (tetrazole chemistry)

    Google Scholar 

  20. Long G. This series (pyrazoylborates)

    Google Scholar 

  21. a) McCusker JK, Walda KN, Dunn RC, Simon JD, Magde D, Hendrickson DN (1992) J Am Chem Soc 114:6919; b) McCusker JK, Walda JN, Dunn RC, Simon JD, Magde D, Hendrickson DN (1993) J Am Chem Soc 115:298

    Google Scholar 

  22. a) Decurtins S, Gütlich P, Koehler CP, Spiering H (1985) J Chem Soc Chem Comm 1985:430; b) Moliner N, Gaspar AB, Munoz MC, Niel V, Cano J, Real JA (2001) Inorg Chem 40:3986; c) Capes L, Letard JF, Kahn O (2000) Chem Eur J 6:2246; d) Hayami S, Gu Z, Einaga Y, Kobayasi Y, Ishikawa Y, Yamada Y, Fujishima A, Sato O (2001) Inorg Chem 40:3240; d) Herber RH (1987) Inorg Chem 26:173; e) Figg DC, Herber RH, Potenza JA (1992) Inorg Chem 31:2111; f) Moliner N, Salmon L, Capes L, Munoz MC, Letard JF, Bousseksou A, Tuchagues JP, McGarvey JJ, Dennis AC, Castro M, Burriel R, Real JA (2002) J Phys Chem B 106:4276; and many more

    Google Scholar 

  23. a) Buchen T, Poganiuch P, Gütlich P (1994) J Chem Soc Dalton 1994:2285; b) Enachescu C, Constant-Machado H, Codjovi E, Linares J, Boukheddaden K, Varret F (2001) J Phys Chem Solids 62:1409

    Google Scholar 

  24. Letard JF, Nguyen O, Soyer H, Mingotaud C, Delhaes P, Kahn O (1999) Inorg Chem 38:3020

    Google Scholar 

  25. a) Baldenius KU, Campen AK, Hönk HD, Rest AJ (1987) J Mol Struct 157:295; b) Hauser A, Adler J, Gütlich P (1988) Chem Phys Lett 152:468

    Google Scholar 

  26. a) Hauser A (1990) Chem Phys Lett 173:507; b) Schenker S, Hauser A, Wang W, Chan IY (1998) Chem Phys Lett 297:281

    Google Scholar 

  27. Deisenroth S, Hauser A, Spiering H, Gütlich P (1994) Hyperfine Int 93:1573

    Google Scholar 

  28. Bergkamp MA, Brunschwig BS, Gütlich P, Netzel TL, Sutin N (1981) Chem Phys Lett 81:147

    Google Scholar 

  29. a) Ensling J, Fitzsimmons BW, Gütlich P (1970) Angew Chem 9:637; b) Grimm R, Gütlich P, Kankeleit E, Link R (1977) J Chem Phys 67:5491

    Google Scholar 

  30. Enachescu C, Oetliker U, Hauser A (2002) J Phys Chem B 106:9540

    Google Scholar 

  31. Birks J (1970) Photophysics of aromatic molecules. Wiley, New York

    Google Scholar 

  32. a) Desaix A, Roubeau O, Jeftic J, Haasnoot JG, Boukheddaden K, Codjovi E, Linares J, Nogues M, Varret F (1998) Eur Phys J B 6:183; b) Letard JF, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432; c) Varret F. This series (optical bistability)

    Google Scholar 

  33. Buhks E, Navon G, Bixon M, Jortner J (1980) J Am Chem Soc 102:2918

    Google Scholar 

  34. a) Xie CL, Hendrickson DN (1987) J Am Chem Soc 109:6981; b) Conti A, Xie CL, Hendrickson DN (1989) J Am Chem Soc 111:1171

    Google Scholar 

  35. a) Hoselton MA, Wilson LJ, Drago RS (1975) J Am Chem Soc 97:1722; b) Katz BA, Strouse CE (1979) J Am Chem Soc 101:6214; c) Mikami M, Konno M, Saito Y (1982) Acta Cryst B38:452; d) Binstead RA, Beattie JK (1986) Inorg Chem 25:1481; e) Konno M, Mikami-Kido M (1991) Bull Chem Soc Japan 64:339; f) Wiehl L, Kiel G, Köhler CP, Spiering H, Gütlich P (1986) Inorg Chem 25:1565; g) Letard JF, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432; h) van Koningsbruggen PJ, Garcia Y, Kahn O, Fournes L, Kooijman H, Spek AL, Haasnoot JG, Moscovici J, Provost K, Michalowicz A, Renz F, Gütlich P (2000) Inorg Chem 39:1891

    Google Scholar 

  36. Donnelly CJ, Imbusch GF (1991) In: DiBartolo B (ed) NATO ASI B 245. Plenum Press, New York, p 175

    Google Scholar 

  37. a) Brunold TC, Güdel HU (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol I, Wiley, New York, p 259; b) Struck CW, Fonger WH (1991) Understanding luminescence spectra and efficiencies using Wp and related functions. Springer, Berlin Heidelberg New York

    Google Scholar 

  38. a) Suppan P (1992) Top Curr Chem 163:95; b) Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100:13,148

    Google Scholar 

  39. Hauser A (1995) Comments Inorg Chem 17:17

    Google Scholar 

  40. a) Takemoto JH, Hutchinson B (1973) Inorg Chem 12:705; b) Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Inorg Chem 40:2201

    Google Scholar 

  41. a) Adler P, Spiering H, Gütlich P (1987) Inorg Chem 26:3840; b) Adler P, Hauser A, Vef A, Spiering H, Gütlich P (1989) Hyperfine Int 47:343

    Google Scholar 

  42. Ferguson J, Herren F (1983) Chem Phys 76:45

    Google Scholar 

  43. a) Adams DM, Long GJ, Williams AD (1982) Inorg Chem 21:1049; b) Meissner E, Köppen H, Spiering H, Gütlich P (1983) Chem Phys Lett 95:163; c) Pebler J (1983) Inorg Chem 22:4125; d) König E, Ritter G, Kulshreshtha SK, Waigel J, Goodwin HA (1984) Inorg Chem 23:1896; e) König E, Ritter G, Waigel J, Goodwin HA (1985) J Chem Phys 83:3055; f) Usha S, Srinivasan R, Rao CN (1985) Chem Phys 100:447; g) Long GJ, Hutchinson B (1987) Inorg Chem 26:608; h) McCusker JK, Zvagulis M, Drickamer HG, Hendrickson DN (1989) Inorg Chem 28:1380; i) Granier T, Gallois B, Gauthier J, Real JA, Zarembowitch J (1993) Inorg Chem 32:5305; j) König E, Ritter G, Grünstreudel H, Dengler J, Nelson J (1994) Inorg Chem 33:837; k) Roux C, Zarembowitch J, Itie JP, Polian A, Verdaguer M (1996) Inorg Chem 35:574; l) Boillot ML, Zarembowitch J, Itie JP, Polian A, Bourdet E, Haasnoot JG (2002) New J Chem 26:313; m) Levchenko GG, Ksenofontov V, Stupakov AV, Spiering H, Garcia Y, Gütlich P (2002) Chem Phys 277:125

    Google Scholar 

  44. a) Slichter CP, Drickamer HG (1972) J Chem Phys 56:2142; b) Drickamer HG, CW Frank (1973) Electronic transitions and the high pressure chemistry and physics of solids. Wiley, New York; c) Grey JK, Butler IS (2001) Coord Chem Rev 219:713

    Google Scholar 

  45. Jeftic J, Hauser A (1996) Chem Phys Lett 248:458

    Google Scholar 

  46. Schenker S, Hauser A, Wang W, Chan IY (1998) J Chem Phys 109:9870

    Google Scholar 

  47. Hauser A, Amstutz N, Delahaye S, Schenker S, Sadki A, Sieber R, Zerara M (2003), Structure and bonding. To be published

    Google Scholar 

  48. Gütlich P (1984) In: Matsuura T (ed) Hot atom chemistry. Kodansha Ltd, Tokyo, p 265

    Google Scholar 

  49. a) Maeda Y, Takashima Y (1988) Comments Inorg Chem 7:41; b) Milne AM, Maslen EN (1988) Acta Cryst B 44:254; c) Oshio H, Toriumi K, Maeda Y, Takashima Y (1991) Inorg Chem 30:4252

    Google Scholar 

  50. a) Figgis BN, Kucharski ES, White AH (1983) Aust J Chem 36:1537; b) Thuery P, Zarembowitch J, Michalowicz J, Kahn O (1987) Inorg Chem 26:851; c) Sieber R, Decurtins S, Stoeckli-Evans H, Wilson C, Yufit D, Howard JAK, Capelli SC, Hauser A (2000) Chem Eur J 6:361

    Google Scholar 

  51. Schenker S, Hauser A, Dyson RM (1996) Inorg Chem 35:4676

    Google Scholar 

  52. Zerara M (2003) PhD thesis, Geneva

    Google Scholar 

  53. Hauser A (1992) Chem Phys Lett 192:65

    Google Scholar 

  54. a) Enachescu C, Linares J, Varret F (2001) J Phys Condens Matter 13:2481; b) Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14,796 and 14,806

    Google Scholar 

  55. Poganiuch P, Decurtins S, Gütlich P (1990) J Am Chem Soc 112:3270

    Google Scholar 

  56. a) Hinek R, Spiering H, Gütlich P, Hauser A (1996) Chem Eur J 2:1435; b) Hinek R, Spiering H, Schollmeyer D, Gütlich P, Hauser A (196) Chem Eur J 2:1427

    Google Scholar 

  57. Wu CC, Jung J, Ganzel PK, Gütlich P, Hendrickson DN (1997) Inorg Chem 36:5339

    Google Scholar 

  58. Schenker S, Stein PC, Wolny JA, Brady C, McGarvey JJ, Toftlund H, Hauser A (2001) Inorg Chem 40:134

    Google Scholar 

  59. Renz F, Oshio H, Ksenofontov V, Waldeck W, Spiering H, Gütlich P. (2000) Angew Chem Int Ed 39:3699

    Google Scholar 

  60. a) Boillot ML, Sour A, Delhaes P, Mingotaud C, Soyer H (1999) Coord Chem Rev 190/192:47; b) Sour A, Boillot ML, Riviere E, Lesot P (1999) Eur J Inorg Chem 12:2117

    Google Scholar 

  61. Hayami S, Gu Z, Shiro M, Einaga Y, Fujishima A, Sato O (2000) J Am Chem Soc 122:7126

    Google Scholar 

  62. Letard JF, Real JA, Moliner N, Gaspar AB, Capes L, Cador O, Kahn O (1999) J Am Chem Soc 121:10,630

    Google Scholar 

  63. Niel V, Munoz MC, Gaspar AB, Galet A, Levchenko G, Real JA (2002) Chem Eur J 8:2446

    Google Scholar 

Download references

Acknowledgements

Many coworkers, students and friends have helped in developing the ideas outlined in this article. In particular, I thank Harmut Spiering, Philipp Gütlich and Silvio Decurtins for a long-standing partnership, and Jelena Jeftic, Sabine Schenker, Harald Romstedt, Asmaâ Sadki, Roland Hinek, Andreas Vef, Peter Adler, Cristian Enachescu, Mohamed Zerara, Regula Sieber, Nahid Amstutz and Doris Hinz for their contributions. This work was financially supported by the Schweizerische Nationalfonds and the Bundesamt für Forschung und Wissenschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hauser .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hauser, A. Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95416

Download citation

  • DOI: https://doi.org/10.1007/b95416

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics