Skip to main content
Log in

Issues Concerning the Laboratory Investigation of Inherited Thrombophilia

  • Review Article
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

Abstract

Inherited thrombophilia, defined as an increased familial tendency to develop thrombosis, may be due to congenital deficiencies or abnormalities of antithrombin, protein C or protein S; to the presence of a point mutation in the factor V gene (G1691A, factor V Leiden) leading to a poor anticoagulant response to activated protein C; or to the presence of a mutation in the prothrombin gene (G20210A) leading to increased plasma levels of prothrombin. The laboratory investigation of inherited thrombophilia should be limited to patients with a history of venous thromboembolism and, if positive, to their family members even though they are still asymptomatic. There is no indication for indiscriminate screening of the general population or screening of asymptomatic women before prescribing oral contraceptives. Testing should be based on the phenotype for antithrombin, protein C and protein S; on the phenotype and genotype (factor V Leiden mutation) for activated protein C resistance; and on the genotype (G20210A mutation) for hyperprothrombinemia. Phenotypic testing should be performed no sooner than three months after acute thrombotic events and at least 2 weeks after discontinuation of oral anticoagulant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Lane DA, Mannucci PM, Bauer KA, et al. Inherited thrombophilia: part 1. Thromb Haemost 1996; 76: 651–62

    PubMed  CAS  Google Scholar 

  2. Lane DA, Bayston T, Olds RJ, et al., for the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Antithrombin mutation database: 2nd (1997) update. Thromb Haemost 1997; 77: 197–211.

    PubMed  CAS  Google Scholar 

  3. Carrell RW, Huntington JA, Mushunje A, et al. The conformational basis of thrombosis. Thromb Haemost 2001; 86: 14–22

    PubMed  CAS  Google Scholar 

  4. Gandrille S, Borgel D, Ireland H, et al., for the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Protein S deficiency: a database of mutations. Thromb Haemost 1997; 77: 1201–14.

    PubMed  CAS  Google Scholar 

  5. Ireland H, Thompson E, Lane DA. Gene mutations in 21 unrelated cases of phenotypic heterozygous protein C deficiency and thrombosis. Protein C Study Group. Thromb Haemost 1996; 76: 867–73

    PubMed  CAS  Google Scholar 

  6. Dahlback B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993; 90: 1004–8

    Article  PubMed  CAS  Google Scholar 

  7. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–7

    Article  PubMed  CAS  Google Scholar 

  8. Kalafatis M, Haley PE, Lu D, et al. Proteolytic events that regulate factor V activity in whole plasma from normal and activated protein C (APC)-resistant individuals during clotting: an insight into the APC-resistance assay. Blood 1996; 87: 4695–707

    PubMed  CAS  Google Scholar 

  9. Svensson PJ, Dahlback B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517–22

    Article  PubMed  CAS  Google Scholar 

  10. Poort SR, Rosendaal FR, Reitsma PH, et al. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698–703

    PubMed  CAS  Google Scholar 

  11. Bauer KA. Management of thrombophilia. J Thromb Haemost 2003; 1: 1429–34

    Article  PubMed  CAS  Google Scholar 

  12. Marlar RA, Neumann A. Neonatal purpura fulminans due to homozygous protein C or protein S deficiencies. Semin Thromb Hemost 1990; 16: 299–309

    Article  PubMed  CAS  Google Scholar 

  13. Manco-Johnson MJ, Knapp-Clevenger R. Activated protein C concentrate reverses purpura fulminans in severe genetic protein C deficiency. J Pediatr Hematol Oncol 2004; 26: 25–7

    Article  PubMed  Google Scholar 

  14. Vandenbroucke JP, van der Meer FJ, Heimerhorst FM, et al. Factor V Leiden: should we screen oral contraceptive users and pregnant women? BMJ 1996; 313: 1127–30

    Article  PubMed  CAS  Google Scholar 

  15. Ridker PM, Miletich JP, Stampfer MJ, et al. Factor V Leiden and risks of recurrent idiopathic venous thromboembolism. Circulation 1995; 92: 2800–2

    Article  PubMed  CAS  Google Scholar 

  16. Simioni P, Prandoni P, Lensing AW, et al. The risk of recurrent venous thromboembolism in patients with an Arg506→Gln mutation in the gene for factor V (factor V Leiden). N Engl J Med 1997; 336: 399–403

    Article  PubMed  CAS  Google Scholar 

  17. Simioni P, Prandoni P, Lensing AW, et al. Risk for subsequent venous thromboembolic complications in carriers of the prothrombin or the factor V gene mutation with a first episode of deep-vein thrombosis. Blood 2000; 96: 3329–33

    PubMed  CAS  Google Scholar 

  18. Eichinger S, Pabinger I, Stumpflen A, et al. The risk of recurrent venous thromboembolism in patients with and without factor V Leiden. Thromb Haemost 1997; 77: 624–8

    PubMed  CAS  Google Scholar 

  19. Lindmarker P, Schulman S, Sten-Linder M, et al. The risk of recurrent venous thromboenibolism in carriers and non-carriers of the G1691A allele in the coagulation factor V gene and the G20210A allele in the prothrombin gene. DURAC Trial Study Group. Duration of Anticoagulation. Thromb Haemost 1999; 81: 684–9

    PubMed  CAS  Google Scholar 

  20. Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism [published erratum appears in N Engl J Med 1999; 341: 298]. N Engl J Med 1999; 340: 901–7

    Article  PubMed  CAS  Google Scholar 

  21. Eichinger S, Weltermann A, Mannhalter C, et al. The risk of recurrent venous thromboembolism in heterozygous carriers of factor V Leiden and a first spontaneous venous thromboembolism. Arch Intern Med 2002; 162: 2357–60

    Article  PubMed  Google Scholar 

  22. Miles JS, Miletich JP, Goldhaber SZ, et al. G20210A mutation in the prothrombin gene and the risk of recurrent venous thromboembolism. J Am Coll Cardiol 2001; 37: 215–8

    Article  PubMed  CAS  Google Scholar 

  23. Eichinger S, Minar E, Hirschl M, et al. The risk of early recurrent venous thromboembolism after oral anticoagulant therapy in patients with the G20210A transition in the prothrombin gene. Thromb Haemost 1999; 81: 14–7

    PubMed  CAS  Google Scholar 

  24. Koeleman BP, Reitsma PH, Allaart CF, et al. Activated protein C resistance as an additional risk factor for thrombosis in protein C-deficient families. Blood 1994; 84: 1031–5

    PubMed  CAS  Google Scholar 

  25. Zoller B, Berntsdotter A, Garcia de Frutos P, et al. Resistance to activated protein C as an additional genetic risk factor in hereditary deficiency of protein S. Blood 1995; 85: 3518–23

    PubMed  CAS  Google Scholar 

  26. van Boven HH, Reitsma PH, Rosendaal FR, et al. Factor V Leiden (FV R506Q) in families with inherited antithrombin deficiency. Thromb Haemost 1996; 75: 417–21

    PubMed  Google Scholar 

  27. Ridker PM, Hennekens CH, Selhub J, et al. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 1997; 95: 1777–82

    Article  PubMed  CAS  Google Scholar 

  28. Rosendaal FR, Koster T, Vandenbroucke JP, et al. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995; 85: 1504–8

    PubMed  CAS  Google Scholar 

  29. Preston FE, Kitchen S, Jennings I, et al. A UK National External Quality Assessment Scheme (UK NEQAS) for molecular genetic testing for the diagnosis of familial thrombophilia. Thromb Haemost 1999; 82: 1556–7

    PubMed  CAS  Google Scholar 

  30. Tripodi A, Peyvandi F, Chantarangkul V, et al. Relatively poor performance of clinical laboratories for DNA analyses in the detection of two thrombophilic mutations: a cause for concern. Thromb Haemost 2002; 88: 690–1

    PubMed  Google Scholar 

  31. Tripodi A, Chantarangkul V, Menegatti M, et al. Performance of clinical laboratories for DNA analyses to detect thrombophilia mutations. Clin Chem 2005; 51: 1310–1

    Article  PubMed  CAS  Google Scholar 

  32. Henkens CM, Bom VJ, van der Meer J. Lowered APC-sensitivity ratio related to increased factor VIII-clotting activity. Thromb Haemost 1995; 74: 1198–9

    PubMed  CAS  Google Scholar 

  33. Tripodi A, Chantarangkul V, Mannucci PM. Hyperprothrombinemia may result in acquired activated protein C resistance. Blood 2000; 96: 3295–6

    PubMed  CAS  Google Scholar 

  34. Olivieri O, Friso S, Manzato F, et al. Resistance to activated protein C in healthy women taking oral contraceptives. Br J Haematol 1995; 91: 465–70

    Article  PubMed  CAS  Google Scholar 

  35. Cumming AM, Tait RC, Fildes S, et al. Development of resistance to activated protein C during pregnancy. Br J Haematol 1995; 90: 725–7

    Article  PubMed  CAS  Google Scholar 

  36. Ehrenforth S, Radtke KP, Scharrer I. Acquired activated protein C-resistance in patients with lupus anticoagulants. Thromb Haemost 1995; 74: 797–8

    PubMed  CAS  Google Scholar 

  37. de Visser MC, Rosendaal FR, Bertina RM. A reduced sensitivity for activated protein C in the absence of factor V Leiden increases the risk of venous thrombosis. Blood 1999; 93: 1271–6

    PubMed  Google Scholar 

  38. Rodeghiero F, Tosetto A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med 1999; 130: 643–50

    PubMed  CAS  Google Scholar 

  39. Jorquera JI, Montoro JM, Fernandez MA, et al. Modified test for activated protein C resistance. Lancet 1994; 344: 1162–3

    Article  PubMed  CAS  Google Scholar 

  40. Tripodi A, Negri B, Bertina RM, et al. Screening for the FV:Q506 mutation: evaluation of thirteen plasma-based methods for their diagnostic efficacy in comparison with DNA analysis. Thromb Haemost 1997; 77: 436–9

    PubMed  CAS  Google Scholar 

  41. Trossaert M, Conard J, Horellou MH, et al. Modified APC resistance assay for patients on oral anticoagulants [letter]. Lancet 1994; 344: 1709

    Article  PubMed  CAS  Google Scholar 

  42. Mannucci PM. Genetic hypercoagulability: prevention suggests testing family members. Blood 2001; 98: 21–2

    Article  PubMed  CAS  Google Scholar 

  43. Green D. Genetic hypercoagulability: screening should be an informed choice. Blood 2001; 98: 20

    Article  PubMed  CAS  Google Scholar 

  44. Middeldorp S, Meinardi JR, Koopman MM, et al. A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism. Ann Intern Med 2001; 135: 322–7

    PubMed  CAS  Google Scholar 

  45. Simioni P, Tormene D, Prandoni P, et al. Incidence of venous thromboembolism in asymptomatic family members who are carriers of factor V Leiden: a prospective cohort study. Blood 2002; 99: 1938–42

    Article  PubMed  CAS  Google Scholar 

  46. Sanson BJ, Simioni P, Tormene D, et al. The incidence of venous thromboembolism in asymptomatic carriers of a deficiency of antithrombin, protein C, or protein S: a prospective cohort study. Blood 1999; 94: 3702–6

    PubMed  CAS  Google Scholar 

  47. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia: report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995; 73: 151–61

    PubMed  CAS  Google Scholar 

  48. Van Hylckama Vlieg A, Komanasin N, Ariens RA, et al. Factor XIII Val34Leu polymorphism, factor XIII antigen levels and activity and the risk of deep venous thrombosis. Br J Haematol 2002; 119: 169–75

    Article  PubMed  Google Scholar 

  49. Tripodi A. Levels of coagulation factors and venous thromboembolism. Haematologica 2003; 88: 705–11

    PubMed  CAS  Google Scholar 

  50. Kluijtmans LA, van den Heuvel LP, Boers GH, et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58: 35–41

    PubMed  CAS  Google Scholar 

  51. Tosetto A, Missiaglia E, Frezzato M, et al. The VITA project: C677T mutation in the methylene-tetrahydrofolate reductase gene and risk of venous thromboembolism. Br J Haematol 1997; 97: 804–6

    Article  PubMed  CAS  Google Scholar 

  52. Brown K, Luddington R, Baglin T. Effect of the MTHFRC677T variant on risk of venous thromboembolism: interaction with factor V Leiden and prothrombin (F2G20210A) mutations. Br J Haematol 1998; 103: 42–4

    Article  PubMed  CAS  Google Scholar 

  53. Frederiksen J, Juul K, Grande P, et al. Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 2004; 104: 3046–51

    Article  PubMed  CAS  Google Scholar 

  54. Hellmann EA, Leslie ND, Moll S. Knowledge and educational needs of individuals with the factor V Leiden mutation. J Thromb Haemost 2003; 1: 2335-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr Ida Martinelli for helpful discussion during the preparation of the manuscript. No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Tripodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripodi, A. Issues Concerning the Laboratory Investigation of Inherited Thrombophilia. CNS Drugs 9, 181–186 (2005). https://doi.org/10.1007/BF03260089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03260089

Keywords

Navigation