Skip to main content
Log in

Plasma-spray forming ceramics and layered composites

  • Ceramic Composite
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In a program at the Thermal Spray Laboratory at the State University of New York at Stony Brook, both conventional gas-stabilized plasma and high-throughput water-stabilized plasma spray torches are being used to produce thick free-standing structures of oxide ceramics, metal-reinforced ceramic laminates, and multilayered or functionally graded ceramic materials. The results of the processing, microstructure, and properties of freeforms produced from ceramics in the alumina, zirconia, and alumina-zirconia system are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Herman, “Plasma Sprayed Coatings,” Sci. Amer., 256(9) (1988), pp. 112–117.

    Google Scholar 

  2. S. Sampath et al., “Thermal Spray Processing of FGMs,” MRS Bull., XX(1) (1995), pp. 27–31.

    Google Scholar 

  3. P. Chraska and M. Hrabovsky, “An Overview of Water Stabilized Plasma Guns and Their Applications,” Thermal Spray: International Advances in Coatings Technology, ed. C.C. Berndt (Materials Park, OH: ASM, 1992), pp. 81–85.

    Google Scholar 

  4. S. Sampath and H. Herman, “Plasma Spray Forming Metals, Intermetallics, and Composites,” JOM, 45(7) (1993), pp. 42–49.

    CAS  Google Scholar 

  5. N. Ault and L. Milligan, “Alumina Radomes by Flame-Spray Process,” Am. Ceram Soc. Bull, 38(11) (1959), pp. 661–664.

    CAS  Google Scholar 

  6. E. Lutz, “Microstructure and Properties of Plasma Ceramics,” J. Am. Ceram. Soc., 77 (5) (1994), pp. 1274–1280.

    CAS  Google Scholar 

  7. K. Neufuss et al., “Plasma Sprayed Free-Standing Ceramic Parts, Ceramics-Adding the Value,” AustCeram 1992, Proc. of the Int. Ceramic Conference, ed. M.J. Bannister (Melbourne, Australia: CSIRO, 1992), pp. 124–129.

    Google Scholar 

  8. B.D. Cullity, “Chemical Analysis by X-Ray Diffraction,” Elements of X-Ray Diffraction, 2nd ed. (Reading, MA: Addison-Wesley Publishing Company, 1978), pp. 397–420.

    Google Scholar 

  9. V. Wilms, “The Microstructure of Plasma Sprayed Ceramic Coatings,” Ph.D. thesis, State Univ. of New York at Stony Brook, Stony Brook, NY (1978).

    Google Scholar 

  10. J. Dubsky et al., “Stabilization of a-Al2O3 Plasma Sprayed Coatings by Chromia, Ceramics-Adding the Value,” in Ref. 6. pp. 793–797.

    Google Scholar 

  11. S. Safai, “A Microstructural Investigation of Plasma Sprayed Metal And Oxide Ceramic Coatings,” Ph.D. thesis, State Univ. of New York at Stony Brook, Stony Brook, NY (1979).

    Google Scholar 

  12. S. Safai and H. Herman, “Microstructural Investigation of Plasma-Sprayed Aluminum Coatings,” Thin Solid Films (1977), pp. 295–306.

    Google Scholar 

  13. R.C. Ruhl, “Cooling Rates in Splat Cooling,” Mat. Sci. and Eng., 1 (1967), pp. 313–320.

    Google Scholar 

  14. A. Krauth and H. Meyer, Ber. Deut. Keram., Ges., 42 (1965), pp. 61–72.

    CAS  Google Scholar 

  15. G. Kalonji, J. McKittrick, and L.W. Hobbs, Advances in Ceramics Volume 12: Science and Technology of Zirconia II, ed. N. Claussen, M. Reuhle, and A. Heuer (Columbus, OH: ACerS, 1984), pp. 816–825.

    Google Scholar 

  16. N. Claussen, G. Lindemann, and G. Petzow, “Rapid Solidification in Al2O3-ZrO2 System,” Ceram. Int., 9 (3) (1983), pp. 83–86.

    CAS  Google Scholar 

  17. J. McKittrick, G. Kalonji, T. Ando, “Crystallization of a Rapidly Solidified Eutectic Glass,” J. Non-Cryst. Solids, 94 (1987) pp. 163–174.

    CAS  Google Scholar 

  18. S. Safai and H. Herman, “Plasma-Sprayed Materials,” Treatise Mtls. Sci. & Tech., ed. H. Herman (New York: Academic Press, 1981), pp. 183–214.

    Google Scholar 

  19. H. Bingtang and D. Chuanxian, “Hollow Spherical Ceramic Powders Prepared by Plasma Spraying,” Proc. Int. Symp. on Advanced Thermal Spraying Technologies and Allied Coatings (Osaka japan: High Temp. Soc. of Japan, 1987), pp. 185–190.

    Google Scholar 

  20. H. Fukanuma, “An Analysis of the Porosity Producing Mechanism,” in Ref. 3, pp. 767–772.

    Google Scholar 

  21. J.K. MacKenzie, Proc. Phys. Soc. (Lond.), B63 (1950), p. 2.

    Google Scholar 

  22. R. McPherson, “The Structure and Properties of Plasma Sprayed Alumina Coatings,” Proc. 5th Conf. Aluminum Oxide (Prague, Czechoslovakia: Prague Inst. of Chem. Tech., 1990), pp. 1–14.

    Google Scholar 

  23. L. Yost Ellis and J.J. Lewandowski, Mat. Sci. & Eng., A183 (1994), pp. 59–67.

    Google Scholar 

  24. M. Finot et al., Mat. Sci. & Eng. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampath, S., Gansert, R. & Herman, H. Plasma-spray forming ceramics and layered composites. JOM 47, 30–33 (1995). https://doi.org/10.1007/BF03221281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221281

Keywords

Navigation