Skip to main content
Log in

Zinc deficiency, ethanol, and myocardial ischemia affect lipoperoxidation in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The production of oxygen free radicals can be stimulated by excess iron, cadmium, nickel, and the like. Inversely, copper, zinc, and selenium inhibit production, either via their own action or via antiradical metalloenzymes. The study involved determining the effect of zinc deficiency combined with chronic ethanol administration on the status of blood and tissue free radicals, as well as on cardiac function in isolated perfused rats' hearts. Animals were fed a basic diet containing residual zinc at 0.2–0.3 ppm. Following a zinc deficiency lasting 5 wk, which during the last 4 wk was accompanied by chronic ethanol administration, hearts were submitted to ischemia for 30 min in vitro, followed by reperfusion. Biochemical analyses (zinc, superoxide dismutase, malondialdehyde, conjugated dienes, and so on) were performed in the blood and in the homogenates of different organs.

The experimental zinc deficiency caused a slight decrease of superoxide dismutase activity, accompanied by increased production of peroxidated lipids. Ethanol administration appeared to increase the levels of peroxidated lipids in the heart. Finally, the combination of zinc deficiency and ethanol administration had very harmful effects, especially on lipid peroxidation and contractile function of the isolated, perfused heart in preischemic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

aldehyde dehydrogenase

ALAT:

alanine aminotransferase

AP:

akaline phosphatase

ASAT:

aspartate aminotransferase

CPK:

creatine phosphokinase

CD:

conjugated dienes

CF:

coronary blood flow

γGT:

γ glutathion transpeptidase

GSH:

reduced glutathione

Gs=sG:

oxidized glutathione

GPx:

glutathione peroxidase

GRx:

glutathione reductase

Hb:

hemoglobin

HR:

heart rate

MDA:

malondialdehyde

OHP:

organic hydroperoxide

RBC:

red blood cells

SOD:

superoxide dismutase

XO:

xanthine oxidase

References

  1. E. S. Reynolds and M. T. Noslen,Free Radicals in Biology, Pryor W. A., ed., Academic, New York. 1980, p. 49–94.

    Google Scholar 

  2. W. T. Bettger, and B. L. O'Dell,Life Sci. 28, 1425–1438 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. M. Chvapil, J. N. Ryan, and C. F. Zukoski,Proc. Soc. Exp. Biol. Med. 141, 150–153 (1972).

    PubMed  CAS  Google Scholar 

  4. M. Chvapil,Med. Clin. North Am. 60, 799–812 (1976).

    PubMed  CAS  Google Scholar 

  5. M. Chvapil, J. N. Ryan, and C. F. Zukoski,Proc. Soc. Exp. Biol. Med. 140, 642–646 (1972).

    PubMed  CAS  Google Scholar 

  6. J. F. Sullivan, M. S. Jetton, H. K. J. Hahn, and R. E. Burch,Am. J. Clin. Nutr.,33, 51–56 (1980).

    PubMed  CAS  Google Scholar 

  7. R. Nordmann, C. Ribiere, and H. Rouach,Prog. Clin. Biol. Res. 241, 201–213 (1987).

    PubMed  CAS  Google Scholar 

  8. N. Kocak-Toker, M. Uysal, G. Aykac, A. Sives, S. Yalcin, and H. Öz,Pharmacol. Res. Commun. 17, 233–239 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. A. Valenzuela, N. Fernandez, V. Fernandez, G. Ugarte and L. A. Videla,FEBS Lett. 111, 11–13 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. L. A. Videla, V. Fernandez, A. De Marinis, N. Fernandez, and A. Valenzuela,Biochem. Biophys. Res. Commun. 104, 965–970 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. R. E. Litov, D. H. Irving, J. E. Downey, and A. L. Tappel,Lipids 13, 305–307 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. S. Shaw, E. Jayatilleke, W. A. Ross, E. R. Gordon, and C. S. Lieber,J. Lab. Clin. Med. 98, 417–424 (1981).

    PubMed  CAS  Google Scholar 

  13. H. Speisky, D. Bunout, H. Orrego, H. G. Giles, A. Gunasekara, and Y. Israel,Res. Commun. Chem. Pathol. Pharmacol. 48, 77–90 (1985).

    PubMed  CAS  Google Scholar 

  14. I. E. Dreosti, Ciba foundation symposium 105. London, 103–123 (1984).

  15. I. E. Dreosti and E. J. Partick,Biol. Trace Elem. Res. 14, 179–190 (1987).

    Article  CAS  Google Scholar 

  16. H. A. Krebs and K. Henseleit,Hoppe Seylers Z. 210, 33–66 (1932).

    CAS  Google Scholar 

  17. O. Langendorff,Pflugers Arch. 61, 291–332 (1895).

    Article  Google Scholar 

  18. S. L. Marklund,J. Biol. Chem. 251, 7504–7507 (1976).

    PubMed  CAS  Google Scholar 

  19. K. Yagi,Biochem. Res. 15, 212–216 (1976).

    CAS  Google Scholar 

  20. H. Ohkawa, N. Ohishi, and K. Yagi,Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. D. Wickens, M. H. Wilkins, J. Lunec, G. Ball, and T. L. Dormandy,Ann. Clin. Biochem. 18, 158–162 (1981).

    PubMed  CAS  Google Scholar 

  22. R. L. Heath and A. L. Tappel,Anal. Biochem. 76, 184–191 (1976).

    Article  PubMed  CAS  Google Scholar 

  23. W. A. Gunzler, H. Kremers, and L. Flohe,Z. Klin. Chem. Klin. Biochem. 10, 444–448 (1974).

    Google Scholar 

  24. I. Carlberg and M. Mannervik,Methods Enzymol. 113, 484–490 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. R. R. Beers and I. W. Sizer,J. Biol. Chem. 195, 133–135 (1952).

    PubMed  CAS  Google Scholar 

  26. F. Tietze,Anal. Biochem. 27, 502–522 (1969).

    Article  PubMed  CAS  Google Scholar 

  27. I. D. Desai,Methods Enzymol. 105, 138–147 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. M. Sugiura, K. Kato, T. Adachi, Y. Ito, and K. Hirano,Chem. Pharm. Bull. 29, 430–432 (1981).

    PubMed  CAS  Google Scholar 

  29. D. C. Salo, S. W. Lin, R. F. Pacifier, and K. J. T. Davies,Free Radical Biol. Med. 5, 335–339 (1988).

    Article  CAS  Google Scholar 

  30. H. W. Sippel,Acta Pharmacol. Toxicol. 53, 135–140 (1983).

    CAS  Google Scholar 

  31. S. Morton and M. C. Mitchell,Biochem. Pharmacol. 34, 1559–1563 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. B. Mills, R. D. Lindeman, and C. A. Lang,J. Nutr. 111, 1098–1102 (1981).

    PubMed  CAS  Google Scholar 

  33. J. C. Seagrave, R. A. Tobey, and C. D. Hildebrand,Biochem. Pharmacol. 32, 3017–3021 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coudray, C., Boucher, F., Richard, M.J. et al. Zinc deficiency, ethanol, and myocardial ischemia affect lipoperoxidation in rats. Biol Trace Elem Res 30, 103–118 (1991). https://doi.org/10.1007/BF02990347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990347

Index Entries

Navigation