Skip to main content
Log in

Investigational strategies for detection and intervention in early-stage pancreatic cancer

A meeting organized by national cancer institute, organ systems program, division of cancer biology, diagnosis, and centers, April 24–27, Annapolis, MD

  • Proceedings of the NCI workshop
  • Published:
International Journal of Pancreatology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BBS:

bombesin

CCK:

cholecystokinin

GIH:

gastrointestinal hormone

NT/N:

neurotensin

References

  1. Kawarada Y, Yamagisawa K, Isaji S, Mizumoto R. The prevalence of pancreatic cancer lymph node metastasis in Japan and pancreatic cancer staging categories.Int J Pancreatol 1994; 16:101–104.

    Google Scholar 

  2. Pour PM, Sayed S, Saved G, Wolf GL.Am J Clin Path 1982; 77:137–152.

    PubMed  CAS  Google Scholar 

  3. Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma by analysis of mutations in the Kirsten-ras oncogene.Ann Surg 1991; 214: 657–662.

    PubMed  CAS  Google Scholar 

  4. Motojima K, Urano T, Nagata Y, Shiku H, Tsunoda T, Kanematsu T. Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma.Am J Gastroenterol 1991; 86: 1784–1788.

    PubMed  CAS  Google Scholar 

  5. Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Ando H, Yanagisawa A, Tsuchiya E, Kato Y, Nakamura Y. Frequent somatic mutations of the APC gene in human pancreatic cancer.Cancer Res 1992; 52: 6696–6698.

    PubMed  CAS  Google Scholar 

  6. Permert J, Larsson J, Westermark GT, Herrington MK, Christ- manson L, Pour PM, Westermark P, Adrian TE.New Engl J Med 1994; 330: 313–318.

    PubMed  CAS  Google Scholar 

  7. Ariyama J. Abnormal glucose tolerance in patients with early pancreatic carcinoma.Int J Pancreatol 1994; 16:911.

    Google Scholar 

  8. Pour PM, Permert J, Mogaki M, Fujii H, Kazakoff K. Endocrine aspects of exocrine cancer of the pancreas. Their patterns and suggested biologic significance.Am J Clin Pathol 1993; 100: 223–230.

    PubMed  CAS  Google Scholar 

  9. Ishikawa O, Nakamori S, Ohigashi H, Imaoka S. Increased secretion of proinsulin in patients with pancreatic cancer.Int J Pancreatol 1994; 16: 86–89.

    Google Scholar 

  10. Cersosimo E, Pisters P, Pesola G, McDermott K, Bajorunas D, Brennen MF. Insulin secretion and action in patients with pancreatic cancer.Cancer 1991; 67: 468–493.

    Google Scholar 

  11. Del Favero G, Basso D, Fogar P, Panozzo MP, Meggiato T, Ferrara C, D’Angeli F, Brigato L, Plebani M.Int J Pancreatol 1994; 16: 84–86.

    Google Scholar 

  12. Ahr’en B, Andr’en-Sandberg A.Res Exp Med 1993; 193: 21–26.

    CAS  Google Scholar 

  13. Vecchia CL, Negri E, Franceschi S, D’Avanzo B, Boyle P. Diabetes and pancreatic cancer risk. An epidemiological assessment.Int J Pancreatol 1994; 16: 81,82.

    Google Scholar 

  14. Gullo L, Pezzilli R, Morselli-Labate AM. Italian Pancreatic Cancer Study Group. Diabetes and the risk of pancreatic cancer.Int J Pancreatol 1994; 16: 94,95.

    Google Scholar 

References

  1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis.Cell 1990; 61: 759–76.

    PubMed  CAS  Google Scholar 

  2. Day DW, Morson BC. inThe Pathogenesis of Colorectal Cancer, Morson, ed., WB Saunders, Philadelphia, 1978; pp. 58–7.

    Google Scholar 

  3. Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Kloppel G. Ki-ras oncogene activation in preinvasive pancreatic cancer.Gastroenterology 1992; 102: 230–23.

    PubMed  CAS  Google Scholar 

  4. Kloppel G. inThe Pancreas, Biology, Pathobiology and Disease, Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA, eds., Raven, New York, 1993; pp. 871–89.

    Google Scholar 

  5. Tada M, Omata M, Ohto M.Ras gene mutations in intraductal papillary neoplasms of the pancreas. Analysis in five cases.Cancer 1991; 67: 634–63.

    PubMed  CAS  Google Scholar 

  6. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988; 53: 549–55.

    PubMed  CAS  Google Scholar 

  7. Bos JL.Ras oncogenes in human cancer: a review.Cancer Res 1989; 49: 4682–468.

    PubMed  CAS  Google Scholar 

  8. Grunewald K, Lyons J, Frohlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR. High frequency of ?i-ras codon 12 mutations in pancreatic adenocarcinomas.Int J Cancer 1989; 43: 1037–104.

    PubMed  CAS  Google Scholar 

  9. Hall PA, Hughes CM Staddon SL, Richman PI, Gullick WU, Lemoin NR. Thec-erb B-2 proto-oncogene in human pancreatic cance.J Pathol 1990; 161: 195–20.

    PubMed  CAS  Google Scholar 

  10. Moodie SA, Wolfman A. The 3Rs of life:ras, raf and growth regulation.Trends in Genetics 1994; 10: 37–6.

    Google Scholar 

  11. Barton CM, Staddon CM, Hall PA, Sullivan CO, Kloppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DA, Lemoine NR. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.Br J Cancer 1991; 64: 1076–108.

    PubMed  CAS  Google Scholar 

  12. Ruggeri B, Zhang S-Y, Caamano J, DiRado M, Flynn SD, Klein Szanto AJP. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.Oncogene 1992; 7: 1503- 151.

    PubMed  CAS  Google Scholar 

  13. Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele H-G, Honold G, Pantel N, Riethmuller G, Scherer E, Maurer J, Maacke H, Deppert W. p53 and K-RAS alterations in pancreatic epithelial cell lesions.Oncogene 1993; 8: 289–29.

    PubMed  CAS  Google Scholar 

  14. Boschman C, Reddy JK, Rao MS. Immunohistochemical analysis of p53 protein expression in human pancreatic ductal adenocarcinomas and precursor lesions.Lab Invest 1994; 70: 129.

    Google Scholar 

  15. Hameed M, Marrero AM, Conlon KC, Brennen MF, Klimstra. Expression of p53 nucleophosphoprotein inin situ pancreatic ductal adenocarcinoma: an immuno-histochemical analysis of 100 cases.Lab Invest 1994; 70: 132A.

    Google Scholar 

  16. Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Ando H, Yamagisawa A, Tsuchiya E, Kato Y, Nakamura Y. Frequent somatic mutations of the APC gene in human pancreatic cancer.Cancer Res 1992; 52: 6696–663.

    PubMed  CAS  Google Scholar 

  17. Höhne M, Halatsch M-E, Kahl GF, Weinel RJ. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma.Cancer Res 1992; 52: 2616–261.

    PubMed  Google Scholar 

  18. Neuman WL, Wasyiyshyn ML, Jacoby R, Erroi F, Angriman I, Montag A, Brasitus T, Michelassi F, Westbrook CA. Evidence for a common molecular pathogenesis in colorectal, gastric, and pancreatic cancer.Genes Chromosomes & Cancer 1991; 3: 468–47.

    CAS  Google Scholar 

  19. Nakamori S, Ishikawa O, Ohigashi H, Imaoka S, Sasaki Y, Kameyama M, Kabuto T, Furukawa H, Iwanakga T, Kimura N. Clinicopathological features and prognostic significance of nucleoside diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms.Int J Pancreatol 1993; 14: 125–13.

    PubMed  CAS  Google Scholar 

  20. Slack JMW transformations in man: implications for the mechanism of embryonic development and for the organization of epithelia.J Theor Biol 1985; 114: 463–49.

    PubMed  CAS  Google Scholar 

  21. Scarpelli DG. Editorial. Multipotent developmental capacity of cells in the adult animal.Lab Invest 1985; 52:331–33.

    PubMed  CAS  Google Scholar 

  22. Scarpelli DG, Rao SM, Reddy JK. Studies of pancreatic carcinogenesis in different animai models.Environ Health Perspect 1984; 56: 219–22.

    CAS  PubMed  Google Scholar 

  23. Arias AE, Bendayan M. Differentiation of pancreatic acinar cells into duct-like cells in vitro. Lab Invest 1993; 69: 518–53.

    PubMed  CAS  Google Scholar 

  24. Hall PA, Lemoine NR. Rapid acinar to ductal trans- differentiation in cultured human exocrine pancreas.J Pathol 1992; 166: 97–10.

    PubMed  CAS  Google Scholar 

  25. Scarpelli DG, Hubchak S. Unpublished observations.

  26. Pour PM. Mechanism of pseudoductular (tubular) formation during pancreatic carcinogenesis in the hamster model. An electron-microscopic and immunohistochemical study.Am J Pathol 1988; 130: 335–34.

    PubMed  CAS  Google Scholar 

  27. Longnecker DS, Shinozuka H, Dekkar A. Focal acinar cell dysplasia in human pancreas.Cancer 1980; 45: 534–54.

    PubMed  CAS  Google Scholar 

  28. Parsa I, Longnecker DS, Scarpelli DG, Pour P, Reddy JK, Lefkowitz M. Ductal metaplasia of human exocrine pancreas and its association with carcinoma.Cancer Res 1985; 45: 1285–129.

    PubMed  CAS  Google Scholar 

References

  1. Barton CM, Staddon SL, Huges, CM, Hall PA, O’Sullivan C, Kloppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DP, Lemoine NR. Abnormalities of the p53 tumor suppressor gene in human pancreatic cancer.Br J Cancer 1991; 64: 1076–1082.

    PubMed  CAS  Google Scholar 

  2. Ruggeri B, Zhang SY, Caamano J, DiRado M, Flynn SD, Klein-Szanto AJP. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and RB-1 tumor suppressor genes.Oncogene 1992; 7: 1503–1511.

    PubMed  CAS  Google Scholar 

  3. Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele HG, Honold G, Pantel K, Riethmuller G, Scherer E, Maurer J, Maacke H, Deppert W. p53 and K-ras alterations in pancreatic epithelial cell lesions.Oncogene 1993; 8: 289–298.

    PubMed  CAS  Google Scholar 

  4. Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C, Hirohashi S. Pancreatic adenocarcinomas frequently show p53 gene mutations.Am J Pathol 1993; 142: 1534–1543.

    PubMed  CAS  Google Scholar 

  5. Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, Korc M. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis.Cancer Lett 1993; 69: 151–160.

    PubMed  CAS  Google Scholar 

  6. Schaeffer J, Capella G, Peinaddo MA, Fernandez-Renart M, Perucho M. Comparative analysis of the spectrum of genetic alterations in pancreatic and other carcinomas.Int J Pancreatol 1993; 14: 75–77.

    Google Scholar 

  7. Soon Lee C, Rush M, Charalambous D, Rode J. Immunohistochemical demonstration of the p53 tumor suppressor gene product in cancer of the pancreas and chronic pancreatitis.J Gastroenterol Hepatol 1993; 8: 465–469.

    Google Scholar 

  8. Zhang S Y, Ruggeri B, Agarwal P, Sorling AF, Obara T, Ura H, Namiki M, Klein-Szanto AJP. Immunohistochemical analysis of p53 expression in human pancreatic carcinomas.Arch Pathol Lab Med 1994; 118: 150–154.

    PubMed  CAS  Google Scholar 

  9. Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, Ranzani GN. K-ras and p 53 gene mutations in pancreatic cancer: ductal and non-ductal tumors progress through different genetic lesions.Cancer Res 1994; 54: 1556–1560.

    PubMed  CAS  Google Scholar 

  10. Levine AJ. The tumor suppressor genes.Ann Rev Biochem 1993; 62: 623–651.

    PubMed  CAS  Google Scholar 

  11. Harris CC, Holstein M. Clinical implications of the p53 tumorsuppressor gene. New Engl J Med 1993; 329: 1318–1327.

    PubMed  CAS  Google Scholar 

  12. Hoorens A, Lemoine NR, McLellan E, Morohoshi T, KamisawaT, Heitz PU, Stamm B, Ruschoff J, Wiedenmann B, Kloppel G. Pancreatic acinar cell carcinomas—an analysis of cell lineage markers, p53 expression, and K-ras mutation.Am J Pathol 1993; 143: 685–698.

    PubMed  CAS  Google Scholar 

  13. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Saito S, Itakura M. Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain reactionsingle strand conformation polymorphism.Cancer Res 1992; 52: 5061–5064.

    PubMed  CAS  Google Scholar 

  14. Goodrich DW, Lee W-H. Molecular characterization of the retinoblastoma susceptibility gene.Biochim Biophys Acta 1993; 1155:4361.

    Google Scholar 

  15. Lynch HT, Fitzsimmons ML, Smyrk TC, Lanspa SJ, Watson P, McClellan J, Lynch JF. Familial pancreatic cancer: clinicopathologic study of 18 nuclear families.Gastroenterol 1990; 85: 54–60.

    CAS  Google Scholar 

  16. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma.J Natl Cancer Inst 1993; 85: 1657–1669.

    PubMed  CAS  Google Scholar 

  17. Lehman TA, Bennett WP, Metcalf RA, Welsh J A, Ecker J, Modali RV, Ullrich S, Romano JW, Appella E, Testa JR, Gerwin BI, Harris CC. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines.Cancer Res 1991; 51: 4090–4096.

    PubMed  CAS  Google Scholar 

  18. Hogg A, Onadim Z, Baird PN, Cowell JK. Detection of heterozygous mutations in the RB-1 gene in retinoblastoma patients using single-strand conformation polymorphism analysis and polymerase chain reaction sequencing.Oncogene 1992; 7: 1445–1451.

    PubMed  CAS  Google Scholar 

  19. Sun Y, Hegamyer G, Colburn NH. Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations.Oncogene 1993; 8: 791–795.

    PubMed  CAS  Google Scholar 

  20. Xu H-J, Hu S-X, Cagle FT, Moore GF, Benedict WF. Absence of retinoblastoma protein expression in primary non-small cell lung carcinomas.Cancer Res 1991; 51: 2735–2739.

    PubMed  CAS  Google Scholar 

References

  1. Johansson B, Mandahl N, Heim S, Mertens F, Andr’enSandberg Å, Mitelman F. Chromosome abnormalities in apancreatic adenocarcinoma.Cancer Genet Cytogenet 1989;37: 209–213.

    PubMed  CAS  Google Scholar 

  2. Johansson B, Bardi G, Heim S, Mandahl N, Mertens F, Bak-Jensen E, Andr’en-Sandberg Å, Mitelman F. Nonrandomchromosomal rearrangements in pancreatic carcinomas.Cancer 1992; 69: 1674–1681.

    PubMed  CAS  Google Scholar 

  3. Bardi G, Johansson B, Pandis N, Mandahl N, Bak-Jensen E,Andr’en-Sandberg Å, Mitelman F, Heim S. Karyotypicabnormalities in tumours of the pancreas.Br J Cancer 1993;67: 1106–1112.

    PubMed  CAS  Google Scholar 

  4. Johansson B, Bardi G, Pandis N, Gorunova L, Bäckman PL,Mandahl N, Dawiskiba S, Andr’en-Sandberg Å, Heim S,Mitelman F. The karyotypic pattern of pancreatic adeno-carcinomas correlates with survival and tumour grade.Int J Cancer 1994; 58: 8–13.

    PubMed  CAS  Google Scholar 

  5. Bardi G, Johansson B, Pandis N, Bak-Jensen E, Omdahl C,Heim S, Mandahl N, Andr’en-Sandberg Å, Mitelman F. Cytogenetic aberrations in colorectal adenocarcinomas andtheir correlation to clinicopathologic features.Cancer 1993;71:306–314.

    PubMed  CAS  Google Scholar 

References

  1. Ornitz DM, Palmiter RD, Hammer RE, Brinster RL, Swift GH, MacDonald RJ. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinarcells of transgenic mice.Nature 1985; 313: 600–603.

    PubMed  CAS  Google Scholar 

  2. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD. Factors affecting the efficiency of introducing foreignDNA into mice by microinjecting eggs.Proc Natl Acad Sci USA 1985; 82: 4438–4442.

    PubMed  CAS  Google Scholar 

  3. Brinster RL. Stem cells and transgenic mice in the study ofdevelopment.Int J Dev Biol 1993; 37: 89–99.

    PubMed  CAS  Google Scholar 

  4. Hammer RE, Maika SD, Richardson JA, Tang J-P, Taurog JD. Spontaneous inflammatory disease in transgenic ratsexpressing HLA-B27 and human β2m: an animal model ofHLA-B27-associated human disorders.Cell 1990; 63: 1099–1112.

    PubMed  CAS  Google Scholar 

  5. Mullins JJ, Peters J, Ganten D. Fulminant hypertension intransgenic rats harbouring the mouse Ren-2 gene.Nature 1990; 344: 541–544.

    PubMed  CAS  Google Scholar 

  6. Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ,Ebert KM, Palmiter RD, Brinster RL. Production oftransgenic rabbits, sheep and pigs by microinjection.Nature 1985; 315: 680–683.

    PubMed  CAS  Google Scholar 

  7. Merlino G. Transgenic mice as models for tumorigenesis.Cancer Invest 1994; 12: 203–213.

    PubMed  CAS  Google Scholar 

  8. Ornitz DM, Hammer RE, Messing A, Palmiter RD, Brinster RL. Pancreatic neoplasia induced by SV40 T-antigenexpression in acinar cells of transgenic mice.Science 1987; 238: 188–193.

    PubMed  CAS  Google Scholar 

  9. Longnecker DS, Kuhlmann ET, Freeman DH. Characterization of the elastase-1 simian virus 40 T-antigenmouse model of pancreatic carcinoma: effects of sex anddiet.Cancer Res 1990; 50: 7552–7554.

    PubMed  CAS  Google Scholar 

  10. Bell RH, Brinck-Johnsen T, Longnecker DS. Inhibitoryeffect of streptozotocin on tumor development in transgenicmice bearing an elastase 1-SV40 T-antigen fusion gene.Pancreas 1991; 6: 475–478.

    PubMed  CAS  Google Scholar 

  11. Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ. Formation of the tetraploid intermediate is associatedwith the development of cells with more than fourcentrioles in the elastase-simian virus 40 tumor antigentransgenic mouse model of pancreatic cancer.Proc NatlAcad Sci USA 1991; 88: 6427–6431.

    CAS  Google Scholar 

  12. Kuhlmann E, Terhune PG, Longnecker DS. Evaluation ofc-K-ras in pancreatic carcinomas from Ela-1, SV40Etransgenic mice.Carcinogenesis 1993; 14: 2649–2651.

    PubMed  CAS  Google Scholar 

  13. Povoski SP, Zhou W, Longnecker DS, Bell RH. Novelexpression of gastrin (CCK-B) receptors in pancreaticcarcinomas and dysplastic pancreas from transgenic mice.Am J Surg 1994; 167: 120–127.

    PubMed  CAS  Google Scholar 

  14. Ceci JD, Kovatch RM, Swing DA, Jones JM, Snow CM,Rosenberg MP, Jenkins NA, Copeland NG, Meisler MH. Transgenic mice carrying a murine amylase 2.2/SV40 Tantigen fusion gene develop pancreatic acinar cell and stomach carcinomas.Oncogene 1991; 6: 323–332.

    PubMed  CAS  Google Scholar 

  15. Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL. Pancreatic neoplasia induced byras expression inacinar cells of transgenic mice.Cell 1987; 48: 1023–1034.

    PubMed  CAS  Google Scholar 

  16. Sandgren EP, Quaife CJ, Paulovich AG, Palmiter RD,Brinster RL. Pancreatic tumor pathogenesis reflects thecausative genetic lesion.Proc Natl Acad Sci USA 1991; 88: 93–97.

    PubMed  CAS  Google Scholar 

  17. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFα in transgenic mice: inductionof epithelial hyperplasia, pancreatic metaplasia, andcarcinoma of the breast.Cell 1990; 61: 1121–1135.

    PubMed  CAS  Google Scholar 

  18. Dempsey PJ, Goldenring JR, Soroka CJ, Modlin IM, McClure RW, Lind CD, Ahlquist DA, Pittelkow MR, Lee DC, Sandgren EP, Page DL, Coffey RJ. Possible role oftransforming growth factor a in the pathogenesis ofMenetrier’s disease: supportive evidence from humans andtransgenic mice.Gastro enterology 1992; 103: 1950–1963.

    CAS  Google Scholar 

  19. Takagi H, Jhappan C, Sharp R, Merlino GT. Hypertrophicgastropathy resembling Menetrier’s disease in transgenicmice overexpressing transforming growth factor a instomach.J Clin Invest 1992; 90: 1161–1167.

    PubMed  CAS  Google Scholar 

  20. Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver.Mol Cell Biol 1993; 13: 320–330.

    PubMed  CAS  Google Scholar 

  21. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH,Merlino GT. TGFα overexpression in transgenic miceinduces liver neoplasia and abnormal development of themammary gland and pancreas.Cell 1990; 61: 1137–1146.

    PubMed  CAS  Google Scholar 

  22. Bockman DE, Merlino G. Cytological changes in the pancreas of transgenic mice overexpressing transforming growth factor αGastroenterology 1992; 103: 1883–1892.

    PubMed  CAS  Google Scholar 

  23. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice,Proc Natl Acad Sci USA 1991; 88: 478–482.

    PubMed  CAS  Google Scholar 

  24. Palmiter RD, Sandgren EP, Koeller DM, Brinster RL. Distal regulatory element from the mouse metallothionein locus stimulate gene expression in transgenic mice.Mol Cell Biol 1993; 13: 5266–5275.

    PubMed  CAS  Google Scholar 

  25. McKnight RA, Shamay A, Sankaran L, Wall RJ, Hen-nighausen L. Matrixattachment regions can impart position- independent regulation of a tissue-specific gene in transgenic mice.Proc Natl Acad Sci USA 1992; 89: 6943–6947.

    PubMed  CAS  Google Scholar 

References

  1. Cubilla AL, Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer.Cancer Res 1976; 36: 2690–2698.

    PubMed  CAS  Google Scholar 

  2. Klöppel G, Bommer G, Rückert K, Seifert G. Intraductal proliferation in the pancreas and its relationship to human and experimental carcinogenesis.Virchows Arch A 1980; 387: 221–233.

    Google Scholar 

  3. Kozuka S, Sassa R, Taki T, Masamoto K, Nagasawa S, Saga S, Hasegawa B, Takeuchi M. Relation of pancreatic duct hyperplasia to carcinoma.Cancer 1979; 43: 1418–1428.

    PubMed  CAS  Google Scholar 

  4. Longnecker DS, Shinozuka H, Dekker A. Focal acinar cell dysplasia in human pancreas.Cancer 1980; 45: 534–540.

    PubMed  CAS  Google Scholar 

  5. Pour P, Althoff J, Takahashi M. Early lesions of pancreatic ductal carcinoma in the hamster model.Am J Pathol 1977; 88: 291–308.

    PubMed  CAS  Google Scholar 

  6. Longnecker DS. Experimental models of exocrine pancreatic tumors, inThe Exocrine Pancreas: Biology, Pathobiology and Diseases, Go VLWG, Brooks FP, Di Magno EP, Gardner JD, Lebenthal E, Scheele GA, eds., Raven, New York, 1986; pp. 443–458.

    Google Scholar 

  7. Konishi Y, Mizumoto K, Kitazawa S, Tsujiuchi T, Tsutsumi M, Kamano T. Early ductal lesions of pancreatic carcino- genesis in animals and humans.Int J Pancreatol 1990; 7: 83–89.

    PubMed  CAS  Google Scholar 

  8. Shibata D, Capella G, Perucho M. Mutational activation of the c-K-ras gene in human pancreatic carcinoma.Bailliere’s Clin Gastroenterol 1990; 4: 151–169.

    CAS  Google Scholar 

  9. Schaeffer BK, Glasner S, Kuhlmann ET, Myles JL, Longnecker DS. Mutated c-K-ras in small pancreatic adeno-carcinomas.Pancreas 1994; 9: 161–165.

    PubMed  CAS  Google Scholar 

  10. Pour PM, Sayed S, Sayed G. Hyperplastic, preneoplastic and neoplastic lesions found in 83 human pancreases.Am J Clin Pathol 1982; 77: 137–152.

    PubMed  CAS  Google Scholar 

  11. Sessa F, Bonato M, Frigerio B, Capella C, Solcia E, Prat M, Bara J, Samloff IM. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.Gastroenterology 1990; 98: 1655–1665.

    PubMed  CAS  Google Scholar 

  12. Chen J, Baithun SI, Ramsay MA. Histogenesis of pancreatic carcinoma: a study based on 248 cases.J Pathol 1985; 146: 65–76.

    PubMed  CAS  Google Scholar 

  13. Yanagisawa A, Ohtake K, Ohashi K, Hori M, Kitagawa T, Sugano H, Kato Y. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation.Cancer Res 1993; 53: 953–956.

    PubMed  CAS  Google Scholar 

  14. Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Klöppel G. Ki-ras oncogene activation in pre-invasive pancreatic cancer,Gastroenterology 1992; 102: 230–236.

    PubMed  CAS  Google Scholar 

  15. Mizumoto K, Tsutsumi M, Kitazawa S, Tsujita S, Nakayama M, Tsujii T, Kanehiro H, Nakajirna Y, Nakano H, Konishi Y. Intraductal carcinoma in a surgically resected pancreas with chronic pancreatitis.Int J Pancreatol 1990; 7: 279–285.

    Google Scholar 

  16. Furukawa T, Chiba R, Kobari M, Matsuno S, Nagura H, Takahashi T. Varying grades of epithelial atypia in the pancreatic ducts of humans.Arch Pathol Lab Med 1994; 118: 227–234.

    PubMed  CAS  Google Scholar 

  17. Mizumoto K, Inagaki T, Koizumi M, Uemura M, Ogawa M, Kitazawa S, Tsutsumi M, Toyokawa M, Konishi Y. Early pancreatic duct adenocarcinoma.Hum Pathol 1988; 19: 242–244.

    PubMed  CAS  Google Scholar 

  18. Klöppel G. Pancreatic non-endocrine tumours, inPancreatic Pathology. Klöppel G, Heitz PU, eds., Churchill Livingstone, Edinburgh, 1984; pp. 79–113.

    Google Scholar 

  19. Bockman DE. Cells of origin of pancreatic cancer: experi-mental animal tumors related to human pancreas.Cancer 1981; 47: 1528–1534.

    PubMed  CAS  Google Scholar 

  20. Stamm BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease.Hum Pathol (US) 1984; 15: 677–683.

    CAS  Google Scholar 

  21. Parsa I, Longnecker DS, Scarpelli DG, Pour P, Reddy JK, Lefkowitz M. Ductal metaplasia of human exocrine pancreas and its association with carcinoma.Cancer Res 1985; 45: 1285–1290.

    PubMed  CAS  Google Scholar 

  22. Glenner G, Mallory GK. The cystadenoma and related nonfunctional tumors of the pancreas. Pathogenesis, classification, and significance.Cancer 1956; 9: 980–996.

    PubMed  CAS  Google Scholar 

  23. Kishi K, Nakamura K, Yoshimori M, Tajiri H, Ozaki H, Kinoshita T, Kosuge T, Hayakawa M. Morphology and pathological significance of focal acinar cell dysplasia of the human pancreas.Pancreas 1992; 7: 177–182.

    PubMed  CAS  Google Scholar 

References

  1. Ghadirian P, Simard A, Baillargeon J, Maisonneuve P, Boyle P. Nutritional factors and pancreatic cancer in the Francophone community in Montreal.Int J Cancer 1991; 47: 1–6.

    PubMed  CAS  Google Scholar 

  2. Howe GR, Ghadirian P, Bueno de Mesquita HB, Zatonski WA, Baghurst PA, Miller AB, Simard A, Baillargeon J, De Waard F, Przewozniak K, McMichael AJ, Jain M, Hsieh CC, Maisonneuve P, Boyle P, Walker AM. A collective case-control study of nutrient intake and pancreatic cancer within the SEARCH Program.Int J Cancer 1992; 51: 365–372.

    PubMed  CAS  Google Scholar 

  3. Ghadirian P, Simard A, Baillargeon J. Tobacco, alcohol, and coffee and cancer of the pancreas.Cancer 1991; 67: 2664–2670.

    PubMed  CAS  Google Scholar 

References

  1. Mao C, Domenico D, Kim K, Hanson DJ, Howard JM. Observations on the developmental patterns and the consequences of pancreatic exocrine adenocarcinoma. Based on the findings of 154 autopsies. Submitted for publication.

  2. Yamaguchi K. Pancreatic carcinoma associated with chronic calcifying pancreatitis.Int J Pancreatol 1992; 12: 297–303.

    PubMed  CAS  Google Scholar 

  3. Lowenfels AB, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer.N Engl J Med 1993; 328: 1433–1437.

    PubMed  CAS  Google Scholar 

  4. Johnson JR, Zintel HA. Pancreatic calcification and cancer of the pancreas.Surg Gynecol Obstet 1963; 117: 585–588.

    PubMed  CAS  Google Scholar 

  5. Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, Korc M. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis.Cancer Lett 1993; 69(3): 151–160.

    PubMed  CAS  Google Scholar 

  6. Tada M, Omata M, Ohto M. Clinical applications for ras gene mutations for diagnosis of pancreatic adenocarcinoma.Gastroenterol 1991; 100: 233–238.

    CAS  Google Scholar 

  7. Castleman B, Scully R, McNeely BU. Case records of the Massachusetts General Hospital Case 25-1972.N Engl J Med 1972; 286: 1353.

    Google Scholar 

  8. Kalapothaki V, Tzonou A, Hsieh C, Toupadaki N, Kara-katsami A, Trichopoulos D. Tobacco, ethanol, coffee, pancreatitis, diabetes mellitus, and cholelithiasis as risk factors for pancreatic carcinoma.Cancer Causes and Control 1993; 4: 375–382.

    PubMed  CAS  Google Scholar 

  9. Meduri, F, Diana F, Losacco L, Barzon E. Correlation between chronic calcific pancreatitis and pancreatic carcinoma.Hepato-gastroenterology 1992; April (suppl.): 33.

  10. Scuro, LA. Longterm evolution of chronic pancreatitis: The Italian experience, inAcute and Chronic Pancreatitis, Scuro LA, Dagradi A, eds., Springer-Verlag, Berlin 1981; pp. 259–265.

    Google Scholar 

  11. Greenlee HB, Prinz RA, Aranha GV. Long-term results of side-to-side pancreaticojejunostomy.World J Surg 1990; 14: 70–76.

    PubMed  CAS  Google Scholar 

  12. Augustine P, Ramesh H. Is tropical pancreatitis pre-malignant?Am J Gastroenterol 1992; 87: 1005–1008.

    PubMed  CAS  Google Scholar 

  13. Shenoy KT, Narendranathan M, Hariharan M. Tropical pancreatitis-sequelae and complications: A prospective study, inProceedings of the Annual Conference of the Indian Society of Pancreatology, Balakrishnan V, Thankappan KR, eds., Medical College Trivandrum, Trivandrum 1986; p. 86.

    Google Scholar 

  14. Thomas PG, Augustine P, Ramesh H, Rangabashyan N. Observations and surgical management of tropical pancreatitis in Kerala and South India.World J Surg 1990; 14: 32–42.

    PubMed  CAS  Google Scholar 

References

  1. Boring CC, Squires TS, Tong T, Montgomery S. Cancerstatistics, 1994.Cancer J Clin 1994; 44: 7–26.

    CAS  Google Scholar 

  2. Auerbach 0, Garfinkel L. Histologic changes in pancreas in relation to smoking and coffee-drinking habits.Dig Dis Sci 1986; 31: 1014–1020.

    PubMed  CAS  Google Scholar 

  3. Durbec JP, Chevillotte C, Bidart JM, et al. Diet, alcohol, tobacco, and risk of cancer of the pancreas: a case-control study.Br J Cancer 1983; 43: 463–470.

    Google Scholar 

  4. Ghadirian P, Simard A, Baillargeon J, et al. Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone community in Montreal, Canada.Int J Pane reatol 1991; 10(3-4): 183–196.

    Google Scholar 

  5. Falk RT, Pickle LW, Fontham ET, et al. Life-style risk factors for pancreatic cancer in Louisiana: a case-control study.Am J Epidemiol 1988; 128: 324–336.

    PubMed  CAS  Google Scholar 

  6. Lynch HT, Fitzsimmons ML, Smyrk TC, et al. Familial pancreatic cancer: clinicopathologic study of 18 nuclear families.Am J Gatroenterol 1990; 85: 54–60.

    CAS  Google Scholar 

  7. Castleman, B. Case 25, case records of the Massachusetts General Hospital.N Engl J Med 1972; 286: 1353–1359.

    Google Scholar 

  8. Comfort MW, Steinberg AG. Pedigree of a family with hereditary chronic relapsing pancreatitis.Gastroenterology 1952; 21: 54–63.

    PubMed  CAS  Google Scholar 

  9. Davidson, P, Costanza D, Swieconek JA, et al. Hereditary pancreatitis: a kindred without gross aminoaciduria.Ann Int Med 1968; 68: 88–96.

    PubMed  CAS  Google Scholar 

  10. Pipeleers-Marichal M, Somers G, Willems G, et al. Gastinomas in the duodenum of patients with multiple endocrine neoplasia type 1 and the Zollinger-Elliison syndrome,N Engl J Med 1990; 322: 723–727.

    PubMed  CAS  Google Scholar 

  11. Lynch HT, Voorhees GJ, Lanspa S J, McGreevey PS, Lynch JF. Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study.Br J Cancer 1985; 52: 271–273.

    PubMed  CAS  Google Scholar 

  12. Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer.Cancer 1993; 71: 677–685.

    PubMed  CAS  Google Scholar 

  13. Fitzgibbons RJ Jr, Lynch HT, Stanislav GV, et al. Recognition and treatment of patients with hereditary nonpolyposis colon cancer (Lynch syndromes I and II).Ann Surg 1987; 206: 289–295.

    PubMed  Google Scholar 

  14. Fill WL, Lamiell JM, Polk NO. The radiographie manifestations of Von Hippel-Lindau disease.Radiology 1979; 133: 289–295.

    PubMed  CAS  Google Scholar 

  15. Lynch HT, Fusaro RM. Pancreatic cancer and the familial atypical multiple mole melanoma (FAMMM) syndrome.Pancreas 1991; 6: 127–131.

    PubMed  CAS  Google Scholar 

  16. Bergman W, Watson P, de jong J, Lynch HT, Fusaro FM. Systemic cancer and the FAMMM syndrome.Br JCancer 1990;61:932–936.

    CAS  Google Scholar 

  17. Swift M, Sholman L, Perry M, Chase C. Malignant neoplasms in the families of patients with ataxia telangiectasia.Cancer Res 1976; 36: 209–215.

    PubMed  CAS  Google Scholar 

  18. Burke W, Bennett RL, Schmidt R, Dellinger P, Evans JP. Autosomal dominant transmission of pancreatic cancer with diabetes and exocrine insufficiency in a large kindred.Am J Hum Genet 1992; 51(4): Abstract #191, A-50.

    Google Scholar 

  19. Sandgren EP, Quaife CJ, Palmiter RD, et al. Pancreatic tumor pathenogenesis reflects the causative genetic lesion.Proc Natl Acad Sei USA 1992; 88: 93–97.

    Google Scholar 

  20. Lynch HT, Fusaro L, Lynch J. Familial pancreatic cancer: a family study.Pancreas 1992; 7: 511–515.

    PubMed  CAS  Google Scholar 

References

  1. Lynch HT, Fusaro RM, eds.,Cancer-Associated Genodermatoses. VN Reinhold Co., Boca Raton, FL: 1982

    Google Scholar 

  2. NIH Consensus Conference. Diagnosis and treatment of early melanoma.JAMA 1992; 268: 1314-1319.

    Google Scholar 

  3. Lynch HT, Krush AJ. Heredity and malignant melanoma: implications for early cancer detection.Can Med Assoc J 1968; 99: 17–21.

    PubMed  CAS  Google Scholar 

  4. Fusaro RM, Lynch HT, Lynch JF, Madsen NJ. Phenotypic variation and systemic cancer in the FAMMM syndrome.Pig Cell Res 1988; 1: 152–157.

    Google Scholar 

  5. Lynch HT, Fusaro RM, Kimberling WJ, Lynch JF, Danes BS. Familial atypical multiple mole melanoma (FAMMM) syndrome: segregation analysis.J Med Genet 1983; 20: 342–344.

    PubMed  CAS  Google Scholar 

  6. Kopf AW, Hellman LJ, Rogers GS, Gross DF, Rigel DS, Friedman RJ, Levenstein M, Brown J, Golomb FM, Roses DF. Familial malignant melanoma.JAMA 1986;256:1915–1919.

    PubMed  CAS  Google Scholar 

  7. Greene MH, Tucker MA, Clark WH Jr, Kraemer KH, Elder DE, Fraser MC. Hereditary melanoma and the dysplastic nevus syndrome: the risk of cancers other than melanoma.J Am Acad Dermatol 1987; 16: 792–797.

    PubMed  CAS  Google Scholar 

  8. Tucker MA, Fraser MC, Goldstein AM, Elder DF, Guerry D IV, Organic SM. Risk of melanoma and other cancers in melanoma-prone families.J Invest Dermatol 1993; 100(suppl): 350S-355S.

    PubMed  CAS  Google Scholar 

  9. Fusaro RM, Lynch HT. Conceptual differences on the occurrence of internal malignancies in the FAMMM syndrome.J Am Acad Dermatol 1994; 30: 672–674.

    PubMed  CAS  Google Scholar 

  10. Poole S, Fenske NA. Cutaneous markers of internal malignancy. I Malignant involvement of the skin and the genodermatoses.J Am Acad Dermatol 1993; 28: 1–13.

    PubMed  CAS  Google Scholar 

  11. Poole S, Fenske NA. Cutaneous makers of internal malignancy. II Paraneoplastic dermatoses and environmental carcinogens.J Am Acad Dermatol 1993; 28: 147–164

    PubMed  CAS  Google Scholar 

  12. Marghoob AA, Orlow SJ, Kopf AW. Syndrome associated with melanocytic nevi.J Amer Acad Dermatol 1993; 29: 373–388.

    CAS  Google Scholar 

  13. Bergman W, Palan A, Went LN. Clinical and genetic studies in six Dutch kindred with dysplastic nevus syndrome.Ann Human Genet 1986; 50: 249–258.

    CAS  Google Scholar 

  14. Lynch HT, Follett KL, Lynch PM, Albano WA, Mailliard J, Pierson RL. Family history in an oncology clinic: Implication for cancer genetics.JAMA 1979; 22: 1268–1272.

    Google Scholar 

  15. Bergman W, Watson P, de jong J, Lynch HT, Fusaro RM. Systemic cancer and the FAMMM syndrome.Br J Cancer 1990; 61: 932–936.

    PubMed  CAS  Google Scholar 

  16. Lynch HT, Fusaro RM. Pancreatic cancer and the familial atypical multiple mole melanoma (FAMMM) syndrome.Pancreas 1991; 6: 127–131.

    PubMed  CAS  Google Scholar 

  17. Lynch HT, Fusaro RM, Sandberg AA, Bixenman HA, Johnsen LR, Lynch JF, Ramesh KH, Leppert M. Chromosome instability and the FAMMM syndrome.Cancer Genet Cytogenet 199371: 27–39.

    PubMed  CAS  Google Scholar 

  18. Fusaro RM, Lynch HT, Sandberg AA, Bixenman H, Johnsen LR, Lynch JF. Chromosomal abnormalities in an extended familial atypical multiple mole melanoma kindred, inDermatology Progress and Perspective: Proceedings of the 18th World Congress of Dermatology, Burgdorf WNC, Katz SI, Hood AF, Malkinson FD, Peters MS, Robinson JK, Swerlick R, eds., Parthenon, New York 1993; pp. 288–290.

    Google Scholar 

  19. Lynch HT, Fusaro RM. The surgeon, genetics, and malignant melanoma.Arch Surg 1992; 127: 317–320.

    PubMed  CAS  Google Scholar 

  20. Tulinius H, Olafsdottir GH, Sigvaldason H, Tryggvadottir L, Bjarnadottir K. Neoplastic diseases in families of breast cancer patients.J Med Genet 1994; 31: 618–621.

    PubMed  CAS  Google Scholar 

References

  1. Tsuchiya R, Noda T, Harada N, Miyamoto T, Tomioka T, Yamamoto K, Yamaguchi T, Izawa K, Tsunoda T, Yoshino R, Eto T. Collective review of small carcinomas of the pancreas.Ann Surg 1986; 203: 77–81.

    PubMed  CAS  Google Scholar 

  2. Mao CY, Domenico DR, Kim K, Hanson DJ, Howard JM. 1994 (unpublished).

  3. Willett CG, Lewandrowski K, Warshaw AL, Efird J, Compton CC. Resection margins in carcinoma of the head of the pancreas: Implications for radiation therapy.Ann Surg 1993; 217: 144–148.

    PubMed  CAS  Google Scholar 

  4. Ishikawa O, Ohigashi H, Imaoka S, Furukawa H, Sasaki Y, Fujita M, Kuroda C, Iwanaga T. Preoperative indications for extended pancreatectomy for locally advanced pancreas cancer involving the portal vein.Ann Surg 1992; 215: 231–236.

    PubMed  CAS  Google Scholar 

  5. Nagakawa T, Mori K, Nakano T, Kadoya M, Kobayashi H, Akiyama T, Kayahara M, Ohta T, Ueno K, Higashino Y, Konishi I, Miyazaki I. Perineural invasion of carcinoma of the pancreas and biliary tract.Br J Surg 1993; 80: 619–621.

    PubMed  CAS  Google Scholar 

  6. Warshaw AL, Gu ZY, Wittenberg J, Waltman AC. Pre-operative staging and assessment of resectability of pancreatic cancer.Arch Surg 1990; 125: 230–233.

    PubMed  CAS  Google Scholar 

  7. Fern’andez-del Castillo C, Warshaw AL. Peritoneal metas- tases in pancreatic carcinoma.Hepato-Gastroenterol 1993; 40: 430–432.

    Google Scholar 

  8. Warshaw AL, Tepper JE, Shipley WU. Laparoscopy in the staging and planning of therapy for pancreatic cancer.Am J Surg 1986; 151: 76–80.

    PubMed  CAS  Google Scholar 

  9. Warshaw AL. Implications of peritoneal cytology for staging of early pancreatic cancer.Am J Surg 1991; 6: 26–30.

    Google Scholar 

References

  1. Almoguera C, Shibata D, Forrester K, Martin J, Arnhein N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988; 53: 549–554.

    PubMed  CAS  Google Scholar 

  2. Smit Vthbm, Boot AJM, Smits AMM, Flueren GJ, Cornelisse CJ, Bos JL. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.Nucl Acid Res 1988; 16: 7773–7782.

    CAS  Google Scholar 

  3. Mariyama M, Kishi K, Nakamura K, Obata H, Nishimura S. Frequency and types of point mutation at the 12th codon of the c-Kras gene found in pancreatic cancers from Japanese patients.Jpn J Cancer Res 1989; 80: 622–626.

    PubMed  CAS  Google Scholar 

  4. Grüneward K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR. High frequency of Kit-ras codon 12 mutations in pancreatic adenocarcinomas.Int J Cancer 1989; 43: 1037–1041.

    Google Scholar 

  5. Gonzales-Cadavid NF, Zhou D, Battifora H, Bar-Eli M, Cline MJ. Direct sequencing analysis of exon 1 of the c-K-ras gene shows a low frequency of mutations in human pancreatic adenocarcinomas.Oncogene 1989; 4: 1137–1140.

    Google Scholar 

  6. Tada M, Omata M, Ohto M. Clinical application ofras gene mutation for diagnosis of pancreatic adenocarcinoma.Gastroenterology 1991; 100: 233–238.

    PubMed  CAS  Google Scholar 

  7. Fujii H, Egami H, Chaney W, Pour P, Pelling J. Pancreatic ductal adenocarcinomas induced in Syrian hamsters byN- nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point mutated codon 12.Mol Carcinogenesis 1990; 3: 296–301.

    CAS  Google Scholar 

  8. van Kranen HJ, Vermeulen E, Schoren L, Bax J, Woutersen RA, van Iersel P, van Kreiji CF, Scherer E. Activation of c- K-ras is frequent in pancreatic carcinomas of Syrian hamsters, but is absent in pancreatic tumors of rats.Carcinogenesis 1991; 12: 1477–1482.

    PubMed  Google Scholar 

  9. Cerny WL, Mangold KA, Scarpelli DG. K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster.Cancer Res 1992; 52: 4507–4513.

    PubMed  CAS  Google Scholar 

  10. Motojima K, Urano T, Nagata Y, Shiku H, Tsunoda T, Kanematsu T. Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma.Am J Gastroenterol 1991; 86: 1784–1788.

    PubMed  CAS  Google Scholar 

  11. Neuman WL, Wasylyshyn ML, Jacoby R, Errori F, Angriman I, Montag A, Brasitus T, Michelassi F, Westbrook CA. Evidence for a common molecular pathogenesis in colorectal, gastric and pancreatic cancer.Gene Chrom Cancer 1991; 3: 468–473.

    CAS  Google Scholar 

  12. Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma from other periampullary carcinomas by analysis of mutations in the Kirsten-ras oncogene.Ann Surg 1991; 214: 657–662.

    PubMed  CAS  Google Scholar 

  13. Lemoine NR, Jain S, Hughes CM, Staddon SL Maillet B, Hall PA, Klöppel G.Ki-ras oncogene activation in pre-invasive pancreatic cancer.Gastroenterology 1992; 102: 230–236.

    PubMed  CAS  Google Scholar 

  14. Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele HG, Honold G, Pantel K, Riethmüller G, Scherer E, Maurer J, Maacke H, Deppert W. p53 and K- RAS alterations in pancreatic epithelial cell lesions.Oncogene 1993; 8: 289–298.

    PubMed  CAS  Google Scholar 

  15. Watanabe H, Sawabu N, Ohta H, Satomura Y, Yamakawa O, Motoo Y, Okai T, Takahashi H, Wakabayashi T. Identification of K-ras oncogene mutations in the pure pancreatic juice of patients with ductal pancreatic cancers.Jpn J Cancer Res 1993; 84: 961–965.

    PubMed  CAS  Google Scholar 

  16. Yanagisawa A, Ohtake K, Ohashi K, Hori M, Kitagawa T, Sugano H, Kato Y. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasia of pancreas suffering from chronic inflammation.Cancer Res 1993; 53: 953–956.

    PubMed  CAS  Google Scholar 

  17. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Klöppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DP, Lemoine NR. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.Br J Cancer 1991; 64: 1076–1082.

    PubMed  CAS  Google Scholar 

  18. Ruggeri B, Zhang SY, Caamano J, DiRado M, Flynn SD, Klein-Szants AJP. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.Oncogene 1992; 7: 1503–1511.

    PubMed  CAS  Google Scholar 

  19. Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, Kork M. p53 Mutations are common in pancreatic cancer and are absent in chronic pancreatitis.Cancer Lett 1993;69: 151–160.

    PubMed  CAS  Google Scholar 

  20. Kinzler W, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y. Identification of FAP locus genes from chromosome 5q21.Science 1991; 253: 661–665.

    PubMed  CAS  Google Scholar 

  21. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.Science 1991; 253: 665–669.

    PubMed  CAS  Google Scholar 

  22. Nakamura Y. The role of the adenomatous polyposis coli (APC) gene in human cancers.Adv Cancer Res 1993; 62: 65–87.

    PubMed  CAS  Google Scholar 

  23. Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Ando H, Yanagisawa A, Tsuchiya E, Kato Y, Nakamura Y. Frequent somatic mutations of the APC gene in human pancreatic cancer.CancerRes 1992; 52: 6696–6698.

    CAS  Google Scholar 

  24. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Kunz J, Beger HG, Korc M. Overexpression of HER2/neu oncogene in human pancreatic carcinoma.Human Pathol 1993; 24: 1127–1134.

    CAS  Google Scholar 

  25. Hohne MW, Halatsch ME, Kahl GF, Weinel RJ. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma.Cancer Res 1992; 52: 2626–2619.

    Google Scholar 

References

  1. American Joint Committee (AJC). Manual for staging of cancer. American Joint Committee, Chicago 1978.

  2. UICC.TNM Classification of Malignant Tumours, 4th ed., 2nd rev., Hermanek P, Sobin LH, eds., Springer, Berlin 1992.

    Google Scholar 

  3. American Joint Committee on Cancer (AJCC).Manual for Staging of Cancer, 4th ed., Beahrs OH, Henson DE, Hutter RVP, Kennedy BJ, eds., Lippincott, Philadelphia 1992.

    Google Scholar 

  4. UICC.TNM Supplement 1993. A Commentary on Uniform Use, Hermanek P, Henson DE, Hutter RVP, Sobin LH, eds., Springer, Berlin 1993.

    Google Scholar 

  5. Japanese Pancreatic Society.General Rules for Surgical and Pathological Studies on Cancer of the Pancreas, 3rd ed., Kanahare, Tokyo (in Japanese), cited by Tsunoda T, Ura K, Eto T, Matsumoto T, Tsuchiya R (1991) UICC and Japanese stage classifications for carcinoma of the pancreas.Int J Pancreatol 1991; 8: 205-214.

  6. Moossa AR, Levin B. The diagnosis of “early” pancreatic cancer. The University of Chicago experience.Cancer 1981; 47: 1688–1697.

    PubMed  CAS  Google Scholar 

  7. Hermanek P, Hutter RVP, Sobin LH. Prognostic grouping: the next step in tumor classification.J Cancer Res Clin Oncol 1990; 116: 513–519.

    PubMed  CAS  Google Scholar 

References

  1. UICC.TNM Classification of Malignant Tumours, 4th ed., Springer Verlag, New York, 1987.

    Google Scholar 

  2. The Japan Pancreas Society. The general rules for surgical and pathological studies on cancer of the pancreas. Tokyo, Kanehara Shuppan 1980 (in Japanese).

    Google Scholar 

  3. Tsunoda T, Ura K, Eto T, Matsumoto T, Tsuchiya R. UICC and Japanese stage classifications for cancer of the pancreas.Int J Pancreatol 1991; 8: 205–214.

    PubMed  CAS  Google Scholar 

  4. Nagakawa T, Konishi I, Ueno K, Ohta T, Akiyama T, Kayahara M, Miyazaki I. Surgical treatment of pancreatic cancer; the Japanese experience.Int J Pancreatol 1991; 9: 135–143.

    PubMed  CAS  Google Scholar 

  5. Tsuchiya R. 1990 (personal communication).

  6. Hermanek P. Staging of exocrine pancreatic carcinoma.Eur J Surg Oncol 1991; 17: 167–172.

    PubMed  CAS  Google Scholar 

  7. Geer RJ, Brennan MF. Prognostic indicators for survival after resection of pancreatic adenocarcinoma.Am J Surg 1993; 165: 68–73.

    PubMed  CAS  Google Scholar 

  8. Glasner S, Longnecker DS, Kato Y, Konishi Y, Freeman D, Memoli VA, Moroshoshi T, Mott L, Mukai K, Ozaki H, Tsunoda T, Klöppel G. Comparison of histologic type and stage of exocrine pancreatic neoplasms from surgical series in Europe, Japan and the United States.Lab Invest 1992; 66: 97A.

    Google Scholar 

  9. Livingston EH, Welton ML, Reber HA. Surgical treatment of pancreatic cancer: the United States’ experience.Int J Pancreatol 1991; 9: 153–159.

    PubMed  CAS  Google Scholar 

  10. Grace PA, Pitt HA, Tompkins RK, Denbesten L, Longmire WP Jr. Decreased morbidity and mortality after pan- creaticoduodenectomy.Am J Surg 1986; 151: 141–149.

    PubMed  CAS  Google Scholar 

  11. Crist DW, Sitzmann JV, Cameron JL. Improved hospital morbidity, mortality and survival after the Whipple procedure.Ann Surg 1987; 206: 358–365.

    PubMed  CAS  Google Scholar 

  12. Jordan GL. Pancreatic resection for pancreatic cancer.Surg Clin North Am 1989; 69: 569–597.

    PubMed  Google Scholar 

References

  1. Normanno N, Qi C-F, Gullick WJ, Persico G, Yarden Y, Wen D, Plowman G, Kenney N, Johnson G, Kim N, Brandt R, Martinez-Lacaci I, Dickson RB, Salomon DS. Expression of amphiregulin, cripto-1, and heregulin a in human breast cancer cells.Int J Oncology 1993; 2: 903–911.

    CAS  Google Scholar 

  2. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases.Neuron 1992; 9: 383–391.

    PubMed  CAS  Google Scholar 

  3. Cadena DL, Gill GN. Receptor tyrosine kinases.FASEB J 1992; 6: 2332–2337.

    PubMed  CAS  Google Scholar 

  4. Pawson T, Schlessinger J. SH2 and SH3 domains.CurrBiol 1993; 3: 434–442.

    CAS  Google Scholar 

  5. Jaye M, Schlessinger J, Dionne C. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signaltransduction. Biochim Biophys Acta 1992; 1135: 185–199.

    PubMed  CAS  Google Scholar 

  6. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of protein.Annu Rev Biochem 1989; 58: 575–606.

    PubMed  CAS  Google Scholar 

  7. Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property.Mol CelBiol 1993; 13:4251–4259.

    CAS  Google Scholar 

  8. Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms.Genes & Dev 1994; 8: 133–146.

    CAS  Google Scholar 

  9. Lin HY, Lodish HF. Receptors for the TGF-beta superfamily: Multiple polypeptides and serine/threonine kinases.Trends Cell Biol 1993; 3: 14–19.

    PubMed  CAS  Google Scholar 

  10. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J. TGF beta signals through a heteromeric protein kinase receptor complex.Cell 1992; 71: 1003–1014.

    PubMed  CAS  Google Scholar 

  11. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchler M, Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha.J Clin Invest 1992; 90: 1352–1360.

    PubMed  CAS  Google Scholar 

  12. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Kunz J, Beger HG, Korc M. Overexpression of HER2/neu oncogene in human pancreatic carcinoma.Hum Pathol 1993; 24: 1127–1134.

    PubMed  CAS  Google Scholar 

  13. Kobrin MS, Yamana Y, Friess H, Lopez ME, Korc M. Aberrant expression of type I fibroblast growth factor receptor in human pancreatic adenocarcinomas.Cancer Res 1993; 53: 4741–4744.

    PubMed  CAS  Google Scholar 

  14. Friess H, Yamanaka Y, Buchler M, Beger HG, Kobrin MS, Baldwin RL, Korc M. Enhanced expression of the type II transforming growth factor-beta receptor in human pancreatic cancer cells without alteration of type III receptor expression.Cancer Res 1993; 53: 1–4.

    Google Scholar 

  15. Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, Onda M, Kobrin MS, Korc M. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage.CancerRes 1993; 53: 5289–5296.

    CAS  Google Scholar 

  16. Yamanaka Y, Friess H, Buchler M, Beger HG, Gold LI, Korc M. Synthesis and expression of transforming growth factor β-1, β-2, and β-3 in the endocrine and exocrine pancreas.Diabetes 1993; 42: 746–756.

    PubMed  CAS  Google Scholar 

  17. Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer.J Pathol 1991; 163:111–116.

    PubMed  CAS  Google Scholar 

  18. Lemoine NR, Hughes CM, Barton CM, Poulsom R, Jeffery RE, Klöppel G, Hall PA, Gullick WJ. The epidermal growth factor receptor in human pancreatic cancer.J Pathol 1992; 166:7–12.

    PubMed  CAS  Google Scholar 

  19. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness.Anticancer Res 1993; 13: 565–570.

    PubMed  CAS  Google Scholar 

  20. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udone J, Ullrcih A, Press M. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.Science 1989; 244: 707–712.

    PubMed  CAS  Google Scholar 

  21. Friess H, Yamanaka Y, Buchler M, Kobrin MS, Tahara E, Korc M. Cripto, a member of the epidermal growth factor family, is over-expressed in human pancreatic cancer and chronic pancreatitis.Int J Cancer 1994; 56: 668–674.

    PubMed  CAS  Google Scholar 

  22. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M. Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival.Gastroenterology 1993; 105: 1846–1856.

    PubMed  CAS  Google Scholar 

  23. Aaronson SA. Growth factors and cancer.Science 1991; 254: 146–1153.

    Google Scholar 

References

  1. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis.Cancer Metastasis Rev 1986; 5: 29–49.

    PubMed  CAS  Google Scholar 

  2. Vezeridis MP, Turner MD, Kajiji SM, et al. Metastasis of a human pancreatic cancer (HPC) to liver in nude mice.Proc Am Assoc Cancer Res 1985; 26: 53.

    Google Scholar 

  3. Vezeridis MP, Doremus CM, Tibbetts LM, et al. Experimental metastases from a human pancreatic adenocarcinoma in athymic mice.Surg Res Commun 1989; 6: 313–319.

    Google Scholar 

  4. Vezeridis MP, Meitner PA, Tibbetts LM, et al. Heterogeneity of potential for hematogenous metastasis in a human pancreatic carcinoma.J Surg Res 1990; 48: 51–55.

    PubMed  CAS  Google Scholar 

  5. Vezeridis MP, Tzanakakis GN, Meitner PA, et al. In vivo selection of a highly metastatic cell line from a human pancreatic carcinoma in the nude mouse.Cancer 1992; 69: 2060–2063.

    PubMed  CAS  Google Scholar 

  6. Vezeridis MP, Doremus CM, Tibbetts LM, et al. Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse.J Surg Oncol 1989; 40: 261–265.

    PubMed  CAS  Google Scholar 

  7. Fidler IJ. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis.Cancer Metastases Rev 1991; 10:229–243.

    CAS  Google Scholar 

  8. Folkman J, Langer R, Linhardt RJ, et al. Angiogenesis inhibition and tumor regression caused by heparin fragment in the presence of cortisone.Science 1983; 221: 719–725.

    PubMed  CAS  Google Scholar 

  9. Sakamoto N, Tanaka NG. Effect of angiostatic steroid with or without glucorcorticoid activity on metastasis.Invasion and Metastasis 1987; 7: 208–216.

    CAS  Google Scholar 

  10. Stein-Werblowsky R. On the prevention of hematogenous tumor metastases in rats: the role of proteinase inhibitor Trasylol.J Cancer Res Clin Oncol 1980; 97: 129–135.

    PubMed  CAS  Google Scholar 

  11. Alvarez OA, Carmichael DF, DeClerk YA. Inhibition of collagenalytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases.J Natl Cancer Inst 1990; 82: 589–595.

    PubMed  CAS  Google Scholar 

  12. DeClerk YA, Periz N, Shimada H0, et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases.Cancer Res 1992; 52: 701–708.

    Google Scholar 

  13. Humphries MJ, Olden K, Yamada KU. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells.Science 1986; 233: 467–470.

    PubMed  CAS  Google Scholar 

  14. Saiki I, Iida J, Murata J, et al. Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequences of cell-adhesive molecules.Cancer Res 1989; 49: 3815–3822.

    PubMed  CAS  Google Scholar 

  15. Schwartz GK, Redwood SM, Ohmura T, et al. Inhibition of invasion of invasive human bladder carcinoma cells by protein Kinase C inhibitor staurosporine.J Natl Cancer Inst 1990; 82: 1753–1756.

    PubMed  CAS  Google Scholar 

  16. Kohn EC, Liotta LA. L651582: a novel antiproliferative and antimetastatic agent.J Natl Cancer inst 1990; 82:54–60.

    PubMed  CAS  Google Scholar 

  17. Isoai A, Giga-Hama Y, Shinkai K, et al. Tumor invasion-inhibiting factor 2: primary structure and inhibitory effect on invasion in vitro and pulmonary metastasis of tumor cells.Cancer Res 1992; 52: 1422–1426.

    PubMed  CAS  Google Scholar 

  18. Fidler IJ, Some S, Fogler WE, et al. Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide.Proc Natl Acad Sci USA 1981; 78: 1680–1684.

    PubMed  CAS  Google Scholar 

  19. Li L, Nocolson GL, Fidler IJ. Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine endothelial cells.Cancer Res 1991; 51: 245–254.

    PubMed  CAS  Google Scholar 

  20. Hanna N, Burton RC. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastasis in vivo.J Immunol 1981; 127: 1754–1758.

    PubMed  CAS  Google Scholar 

  21. Richie JP. Abrogation of hematogenous metastases in a murine model by natural killer cells.Surgery 1984; 96: 133–136.

    PubMed  CAS  Google Scholar 

  22. Humphries MJ, Matsumoto K, White SL, et al. Augmentation of murine natural killer cell activity by swainsonine, a new anti-metastatic immunomodulator.Cancer Res 1988; 48: 1410–1415.

    PubMed  CAS  Google Scholar 

  23. Crowley NJ, Vervaert CE, Seigier HF. Treatment of human melanoma hepatic metastases in nude mice with human cytotoxic T lymphocytes.Arch Surg 1991; 126: 433–437.

    PubMed  CAS  Google Scholar 

  24. Nierodzik MLR, Kajumo F, Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vivo and tumor metastasis in vivo.Cancer Res 1992; 52: 3267–3272.

    PubMed  CAS  Google Scholar 

  25. Esumi N, Fan D, Fidler IJ. Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin a highly specific thrombin inhibitor.Cancer Res 1991; 51: 4549–4556.

    PubMed  CAS  Google Scholar 

  26. Tzanakakis GN, Agarwal KC, Vezeridis MP. Inhibition of hepatic metastasis from a human pancreatic adenocarcinoma RWP-2 in the nude mouse by prostacyclin, forskolin, and ketoconazole.Cancer 1990; 65: 446–451.

    PubMed  CAS  Google Scholar 

  27. Tzanakakis GN, Agarwal KC, Vezeridis MP. Prevention of human pancreatic cancer cell-induced hepatic metastasis in nude mice by dipyridamole and its analog RA-233.Cancer 1993;71:2466–2471.

    PubMed  CAS  Google Scholar 

References

  1. Boring CC, Squires TS, Tong T, Montgomery S. Cancer statistics, 1994.Can Cancer J Clin 1994; 44: 7–26.

    CAS  Google Scholar 

  2. Townsend CM Jr, Singh P, Thompson JC. Effect of gastrointestinal peptides on gastrointestinal cancer growth.Gastroenterol Clin North Am 1989; 18(4): 777–791.

    PubMed  Google Scholar 

  3. Lemoine NR, Hall PA. Growth factors and oncogenes in pancreatic cancer.Baillieres Clin Gastroenterol 1990; 4(4): 815–832.

    PubMed  CAS  Google Scholar 

  4. Corjay MH, Dobrzanski DJ, Way JM, Viallet J, Shapira H, Worland P, Sausville EA, Battey, JF. Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells.J Biol Chem 1991; 266(28): 18,771–18,779.

    CAS  Google Scholar 

  5. Ulrich CD, Ferber I, Holicky E, Hadac E, Buell G, Miller LJ. Molecular cloning and functional expression of the human gallbladder cholecystokinin a receptor.Biochem Biophys Res Commun 1993; 193(1): 204–211.

    PubMed  CAS  Google Scholar 

  6. Pisegna JR, de Weerth A, Huppi K, Wank SA. Molecular cloning of the human brain and gastric cholecystokinin receptor: structure, functional expression and chromosomal localization.Biochem Biophys Res Commun 1992; 189(1): 296–303.

    PubMed  CAS  Google Scholar 

  7. Vita N, Laurent P, Lefort S, et al. Cloning and expression of complimentary DNA encoding a high affinity human neurotensin receptor.FEBS Lett 1993; 317: 139–142.

    PubMed  CAS  Google Scholar 

References

  1. Kalthoff H, Roeder C, Humburg I, Thiele HG, Greten H, Schmiegel W. Modulation of platelet-derived growth factor A- and B-chain/c-sis mRNA by tumor necrosis factor and other agents in adenocarcinoma cells.Oncogene 1991; 6: 1015–1021.

    PubMed  CAS  Google Scholar 

  2. Schmiegel W, Roeder C, Schmielau J, Rodeck U, Kalthoff H. Tumor necrosis factor-alpha induces the expression of transforming growth factor-alpha and the epidermal growth factor receptor in human pancreatic cancer cells.PNAS 1993; 90: 863–867.

    PubMed  CAS  Google Scholar 

  3. Kalthoff H, Schneider M. unpublished.

  4. Kalthoff H, Roeder C, Schmiegel W. Cytokine-mediated regulation of growth factor receptors (EGF-R and EERBB-2) in pancreatic tumors, inMolecular Diagnostics of Cancer, Wagener C, Neumann S, eds., Springer, Berlin, 1993; pp. 175–186.

    Google Scholar 

  5. Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W. Tumor Necrosis Factor upregulates the expression of p75 but not p55 TNF-receptors and both receptors mediate, independently of each other, upregulation of TGF-alpha and EGF-R mRNA.JBC 1993; 268: 2762–2766

    CAS  Google Scholar 

  6. Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W. Tumor Necrosis Factor upregulates the expression of p75 but not p55 TNF-receptors and both receptors mediate, independently of each other, upregulation of TGF-alpha and EGF-R mRNA.JBC 1993; 268: 2762–2766.

    CAS  Google Scholar 

  7. Kalthoff H, Roeder C, Gieseking J, Humburg I, Schmiegel W. Inverse regulation of erbB-2 and epidermal growth factor receptors by tumor necrosis factor alpha.PNAS 1993; 90: 8972–8976.

    PubMed  CAS  Google Scholar 

  8. Zöller M, Douvdevani A, Segal S, Apte RN. Interleukin-1 production by transformed fibroblasts. II. Influence on antigen presentation and T-cell mediated anti-tumor response.Int J Cancer 1992; 50: 450–457.

    PubMed  Google Scholar 

References

  1. Meyer J, Jones R. Canine pancreatic responses to intestinal perfused fat and products of fat digestion.Am J Physiol 1974; 226: 1178–1187.

    PubMed  CAS  Google Scholar 

  2. Solomon TE, Vanier M, Morisset J. Cell site and time course of DNA-synthesis in pancreas after caerulein and secretin.Am J Physiol 1983; 245: G99-G105.

    PubMed  CAS  Google Scholar 

  3. Smith JP, Solomon TE, Kramer S. Cholecystokinin stimulates growth of human pancreatic adenocarcinoma SW-1990.Dig Dis Sci 1990; 35: 1377–1384.

    PubMed  CAS  Google Scholar 

  4. Heald EB, Kramer ST, Smith JP. Trophic effects of unsulfated Cholecystokinin on mouse pancreas and human pancreatic cancer.Pancreas 1992; 7: 530–535.

    PubMed  CAS  Google Scholar 

  5. Smith JP, Fantaskey A, Liu G, Zagon IS. Identification of gastrin as a growth peptide in human pancreatic cancer.Am J Physiol 1994; in press.

  6. Chang RSL, Lotti VJ, Che TB, Kunkel KA. Characterization of the binding of [8H]-(+-)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors.Mol Pharm 1986; 30: 212–217.

    CAS  Google Scholar 

  7. Chang RSL, Chen TB, Bock MG, Freidinger RM, Chen R, Rosegay A, Lotti VJ. Characterization of the [3H]L-365,260: a new potent selective brain cholecystokinin (CCK-B) and gastrin receptor antagonist radioligand.Mol Pharm 1989; 35: 803–808.

    CAS  Google Scholar 

  8. Smith JP, Kramer ST, Solomon TE. CCK stimulates the growth of six human pancreatic cancer cell lines in serum free medium.Regul Pept 1991; 32: 341–349.

    PubMed  CAS  Google Scholar 

  9. Steigerwalt RW, Williams JA. Characterization of cholecystokinin receptors on rat pancreatic membranes.Endocrinology 1981; 109: 1746–1753.

    PubMed  CAS  Google Scholar 

  10. Jensen RT, Lemp GF, Gardner JD. Interaction of cholecystokinin with specific membrane receptors on pancreatic cancer cells.Proc Natl Acad Sci USA 1980; 2079-2083.

  11. Smith JP, Rickabaugh CA, McLaughlin PJ, Zagon IS. Cholecystokinin receptors and PANC-1 human pancreatic cancer cells.Am J Physiol 1993; 265: G149-G155.

    PubMed  CAS  Google Scholar 

  12. Smith JP, Liu G, Soundararajan V, McLaughlin PJ, Zagon IS. Identification and characterization of CCK-B/gastrin receptors in human pancreatic cancer cell lines.Am J Physiol 1994; 266: R277–283.

    Google Scholar 

References

  1. Boring CC, Squires TS, Tong T. Cancer Statistics.Ca-A Cancer J Clinicians 1991; 41: 19–36.

    CAS  Google Scholar 

  2. Poston GJ, Gillespie J, Guillou PJ. The biology of pancreatic cancer.Gut 1991; 32: 800–812.

    PubMed  CAS  Google Scholar 

  3. Schally AV. Oncological application of somatostatin analogues.Cancer Res 1988; 48: 6977–6985.

    PubMed  CAS  Google Scholar 

  4. Schally AV. Hypothalamic hormones: from neuroendocri-nology to cancer therapy.Anticancer Drugs 1994; 5: 115–130.

    PubMed  CAS  Google Scholar 

  5. Schally AV, Comaru-Schally AM, Hollander V. Hypothalamic and other peptide hormones, inCancer Medicine, Hollander JR, Frei E, Bast RC, Kufe DW, Morton DL, Weichselbaum RR, eds., Lea & Febiger, Philadelphia, PA 1993; pp. 827–840.

    Google Scholar 

  6. Cai RZ, Szoke B, Lu R, Fu D, Redding TW, Schally AV. Synthesis and biological activity of highly potent octa-peptide analogs of somatostatin.Proc Natl Acad Sci USA 1986; 83: 1896–1900.

    PubMed  CAS  Google Scholar 

  7. Bauer W, Briner U, Boepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J. SMS-201-995: A very potent and selective octapeptide analogue of somatostatin with prolonged action.Life Sci 1982; 31: 1133–1140.

    PubMed  CAS  Google Scholar 

  8. Poston GJ, Schally AV. Somatostatin analogs and pancreatic cancer.Int J Pancreatology 1993; 14: 64–66.

    Google Scholar 

  9. Liebow C, Reilly C, Serrano M, Schally AV. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase.Proc Natl Acad Sci USA 1989; 86: 2003–2007.

    PubMed  CAS  Google Scholar 

  10. Bell GI, Reisine T. Molecular Biology of somatostatin receptor.TINS 1993; 16: 34–38.

    PubMed  CAS  Google Scholar 

  11. Buscail L, Delesque N, Esteve JP, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV, Vaysse N, Susini C. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2.Proc Natl Acad Sci USA 1994; 91: 2315–2319.

    PubMed  CAS  Google Scholar 

  12. Redding TW, Schally AV. Inhibition of growth of pancreatic carcinomas in animal models by analogs of hypothalamic hormones.Proc Natl Acad Sci USA 1984; 81: 248–252.

    PubMed  CAS  Google Scholar 

  13. Szende B, Srkalovic G, Groot K, Lapis K, Schally AV. Regression of nitrosamine-induced pancreatic cancers in hamsters treated with LH-RH antagonists or agonists.Cancer Res 1990; 50: 3716–3721.

    PubMed  CAS  Google Scholar 

  14. Szende B, Srkalovic G, Schally AV, Lapis K, Groot K. Inhibitory effects of analogs of luteinizing hormone- releasing hormone and somatostatin on pancreatic cancers in hamsters.Cancer 1990; 65: 2279–2290.

    PubMed  CAS  Google Scholar 

  15. Szepeshazi K, Schally AV, Cai R-Z, Radulovic S, Milo-vanovic S, Szoke B. Inhibitory effect of bombesin/gastrin-reieasing peptide antagonist RC-3095 and high dose of somatostatin analogue RC-160 on nitrosamine induced pancreatic cancers in hamsters.Cancer Res 1991; 51: 5980–5986.

    PubMed  CAS  Google Scholar 

  16. Szepeshazi K, Lapis K, Schally AV. Effect of combination treatment with analogs of luteinizing hormone releasing hormone (LH-RH) or somatostatin and 5-fluorouracil on pancreatic cancer in hamsters.Int J Cancer 1991; 49: 260–266.

    PubMed  CAS  Google Scholar 

  17. Radulovic S, Comaru-Schally AM, Milovanovic S, Schally A V. Somatostatin analogue RC-160 and LH-RH antagonist SB-75 inhibit growth of MIA PaCa-2 human pancreatic cancer xenografts in nude mice.Pancreas 1993; 8: 88–97.

    PubMed  CAS  Google Scholar 

  18. Radulovic S, Cai RZ, Serfozo P, Groot K, Redding TW, Pinski J, Schally AV. Biological effects and receptor binding affinities of new pseudononapeptide bombesin/ GRP receptor antagonists with N-terminal D-Trp or D-Tpi.Int J Peptide Protein Res 1991; 38: 593–600.

    CAS  Google Scholar 

  19. Lehy T, Puccia F, Chariot J, Labeille D. Stimulating effect of bombesin on the growth of gastrointestinal tract and pancreas suckling rats.Gastroenterology 1986; 90: 1942–1949.

    PubMed  CAS  Google Scholar 

  20. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD. Bombesin-like peptides can function as autocrine growth factors in human small cell lung cancer.Nature (Lond) 1985; 316: 823–826.

    CAS  Google Scholar 

  21. Douglas BR, Woutersen RA, Jansen JBM, de Jong AJL, Rovati LC, Lamers CBHW. Influence of cholecystokinin antagonist on the effects of cholecystokinin and bombesin on azaserine induced lesions on rat pancreas.Gastroenterology 1989; 96: 462–469.

    PubMed  CAS  Google Scholar 

  22. Hajri A, Balboni G, Koening M, Garaud J-C, Damge C. Gastrin-releasing peptide: In vivo and in vitro growth effects on an acinar pancreatic carcinoma.Cancer Res 1992; 52: 3726–3732.

    PubMed  CAS  Google Scholar 

  23. Avis FP, Maneckjee R, Cuttitta F, Nakanishi Y, Mulshine J, Avis I. The role of gastrin releasing peptide in a pancreatic tumor cell line (CAPAN).Proc Am Assoc Cancer Res 1988; 29: 54.

    Google Scholar 

  24. Szepeshazi K, Schally AV, Groot K, Halmos G. Effect of bombesin, gastrin-releasing peptide (GRP)(14-27) and bombesin/GRP receptor antagonist RC-3095 on growth of nitrosamine-induced pancreatic cancers in hamsters.Int J Cancer 1993; 54: 282–289.

    PubMed  CAS  Google Scholar 

  25. Qin Y, Ertl T, Cai RZ, Halmos G, Schally AV. Inhibitory effect of bombesin receptor antagonist RC-3095 on the growth of human pancreatic cancer cells in vivo and in vitro.Cancer Res 1994; 54: 1035–1041.

    PubMed  CAS  Google Scholar 

  26. Zachary I, Sinnett-Smith JW, Rozengurt E. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells: I. Activation of protein kinase C and inhibition of epidermal growth factor binding.J Cell Biol 1986; 102: 221,222.

    Google Scholar 

  27. Liebow C, Lee MT, Krebs LJ, Schally AV. Bombesin may stimulate growth through upregulation of EGF receptors.Pancreas 1992; 7: 746.

    Google Scholar 

  28. Liebow C, Crean DH, Lee MT, Kamer AR, Mang TS, Schally AV. Synergistic effects of bombesin and epidermal growth factor on cancers.Proc Natl Acad Sci USA 1994; 91: 3804–3808.

    PubMed  CAS  Google Scholar 

References

  1. Ghardirian P, Boyle P, Simard A, Baillargeon J, Maisonneuve P, Perret C. Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone community in Montr’eal, Canada.Int J Pancreatol 1991; 10: 183–196.

    Google Scholar 

  2. Lynch HT, Fusaro L, Lynch JF. Familial pancreatic cancer: a family study.Pancreas 1992; 7: 511–515.

    PubMed  CAS  Google Scholar 

  3. Homma T, Tsuchiya R. The study of the mass screening of persons without symptoms and of the screening of outpatients with gastrointestinal complaints or icterus for pancreatic cancer in Japan, using CA19-9 and elastase-1 or ultrasonography.Int J Pancreatol 1991; 9: 119–124.

    PubMed  CAS  Google Scholar 

  4. Ariyama J. The diagnosis of early pancreatic cancer.Jap J Int Med 1992; 81: 4447 (in Japanese).

    Google Scholar 

  5. Niederau C, Grendell JH. Diagnosis of pancreatic carcinoma: imaging techniques and tumor markers.Pancreas 1992; 7: 66–86.

    PubMed  CAS  Google Scholar 

  6. Kim Y. Mucin glycoproteins in gastrointestinal malignancy and metastasis.Eur J Gastroenterol Hepatol 1993; 5: 219–225.

    Google Scholar 

  7. Osako M, Yonezawa S, Siddiki B, Huang J, Ho JJL, Kim YS, Sato E. Immunohistochemical study of mucin carbohydrate and core proteins in human pancreatic tumor.Cancer 1993; 71: 2191–2199.

    PubMed  CAS  Google Scholar 

  8. Sauter G, Moch H, Moore D, Carroll P, Kerschmann R, Chew K, Mihatsch M J, Gudat F, Waldman F. Heterogeneity of the erb B-2 gene amplification in bladder cancer.Cancer Res 1993; 53: 2199–2203.

    PubMed  CAS  Google Scholar 

References

  1. Ho JJL, Kirn YS. Serological pancreatic tumor markers and the MUC1 apomucin.Pancreas, in press.

  2. Ho SB, Kim YS. Carbohydrate antigens on cancer-asso- ciated mucin-like molecules.Sem Cancer Biol 1991; 2: 389–400.

    CAS  Google Scholar 

  3. Chung Y-S, Ho JJL, Kim YS, Tanaka H, Nakata B, Hiura A, Motoyoshi H, Satake K, Umeyama K. The detection of human pancreatic cancer associated antigen in the serum of cancer patients.Cancer 1987; 60: 1636–1643.

    PubMed  CAS  Google Scholar 

  4. Ho JJL, Bi N, Yan P-S, Yuan M, Norton KA, Kim YS. Characterization of new pancreatic cancer-reactive monoclonal antibodies directed against purified mucin. Cancer Res 1991; 51: 372–380.

    CAS  Google Scholar 

  5. Ariyama J, Suyama M, Ogawa K, Ikari T, Nagaiwa J, Fujii D, Tsuchida A. The detection and prognosis of small pancreatic carcinoma.Int J Pancreatol 1990; 7: 37–47.

    PubMed  CAS  Google Scholar 

  6. Palsson B, Andr’en-Sandberg Å, Masson P. Plasma concentrations of CA-50 in relation to tumour burden in exocrine pancreatic cancer.Eur J Cancer 1991; 27: 1279–1282.

    PubMed  CAS  Google Scholar 

  7. Homma T, Tsuchiya R. The study of the mass screening of persons without symptoms and of the screening of outpatients with gastrointestinal complaints or icterus for pancreatic cancer in Japan, using CA19-9 and elastase-1 or ultrasonography.Int J Pancreatol 1991; 9: 119–124.

    PubMed  CAS  Google Scholar 

  8. Frebourg T, Bercoff E, Manchon N, Senant J, Basuyau J-P, Breton P, Janvresse A, Brunelle P, Bourreille J. Evaluation of CA 19-9 antigen level in the early detection of pancreatic cancer.Cancer 1998; 62: 2287–2290.

    Google Scholar 

  9. Chung Y-S, Sawada T, Kondo Y, Sowa M, Ochi H, Ho JJL, Kim YS. Clinical significance of immunoscintigraphy with111In-labelled monoclonal antibody (Nd2) in patients with pancreatic cancer.Proc Am Assoc Cancer Res 1992; 33: 317.

    Google Scholar 

  10. Klapdor R, Montz R. Radioimmunodiagnosis of pancreatic cancer disease.Int J Pancreatol 1991; 9: 99–111.

    PubMed  CAS  Google Scholar 

  11. Chung Y-S, Nakata B, Sawada T, Yamashita Y, Kondo Y, Inui A, Kim KS, Umeyama K, Ho JJL, Kim YS, Sowa M. New radioimmunoassay for pancreatic cancer- associated antigen SPan-1 with reference to differential diagnosis and monitoring in pancreatic cancer.Int J Oncol 1993; 2: 921–926.

    Google Scholar 

  12. Malesci A, Tommasini MA, Bonato C, Bocchia P, Bersani M, Zerbi A, Berreta E, DiCarlo V. Determination of CA19- 9 antigen in serum and pancreatic juice for differential diagnosis of pancreatic adenocarcinoma from chronic pancreatitis.Gastroenterology 1987; 92: 60–76.

    PubMed  CAS  Google Scholar 

  13. Satake K, Chung Y-S, Yokomatsu H, Nakata B, Sawada T, Nishiwaki H, Umeyama K. Various tumor marker for small pancreatic cancer with special reference to the present status of pancreatic cancer in Japan and our experience over the past 2 years.Pancreas 1991; 6: 234–241.

    PubMed  CAS  Google Scholar 

  14. Chung YS, Nakata B, Yokomatsu H, Sawada T, Tanaka H, Nishiwaki H, Satake K, Umeyama K, Takeuchi T, Ho JJL, Kim YS. Clinical significance of measurement of new pancreatic cancer associated antigen.J Tumor Marker Oncol 1990; 5: 71–77.

    Google Scholar 

  15. Haglund C, Lindgren J, Roberts PJ, Nordling S. Tissue expression of the tumor marker CA 50 in benign and malignant pancreatic lesions. A comparison with CA19-9.Int J Cancer 1986; 38: 841–846.

    PubMed  CAS  Google Scholar 

  16. Takasaki H, Uchida E, Tempero MA, Burnett DA, Metzgar RS, Pour PM. Correlative study on expression of CA19-9 and DU-PAN-2 in tumor tissue and in serum of pancreatic cancer patients.Cancer Res 1988; 48: 1435–1438.

    PubMed  CAS  Google Scholar 

  17. Kiriyama S, Hayakawa T, Kondo T, Shibata T, Kitagawa M, Ono H, Sakai Y. Usefulness of a new tumor marker, Span-1, for the diagnosis of pancreatic cancer.Cancer 1990; 65: 1557–1561.

    PubMed  CAS  Google Scholar 

  18. Goldenberg DM, Blumenthal RD, Sharkey RM. Biological and clinical perspectives of cancer imaging and therapy with radiolabeled antibodies.Sem Cancer Biol 1990; 1: 217–225.

    CAS  Google Scholar 

  19. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors.Cancer Res (Suppl) 1990; 50: 814s-819s.

    CAS  Google Scholar 

  20. Greiner JW, Guadagni F, Goldstein D, Smalley RV, Borden EC, Simpson JF, Molinolo A, Schlom J. Intraperitoneal administration of interferon-gamma to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carcinoembryonic antigen on malignant ascites cells.J Clin Oncol 1992; 10: 735–746.

    PubMed  CAS  Google Scholar 

  21. O’ Connell MJ, Ritts RA Jr, Moertel CG, Schutt AJ, Sherwin SA. Recombinant interferon-γ lacks activity against rneta- static colorectal cancer but increases serum levels of CA 19-9.Cancer 1989; 63: 1998–2004.

    CAS  Google Scholar 

  22. Greiner JW, Guadagni F, Goldstein D, Bordon EC, Ritts RE Jr, Witt P, LoBuglio AF, Saleh MN, Schlom J. Evidence for the elevation of serum carcinoembryonic antigen and tumor associated glycoprotein-72 levels in patients administered interferons.Cancer Res 1991; 51: 4155–4163.

    PubMed  CAS  Google Scholar 

  23. Itai S, Nishikata J, Yoneda T, Ohmori K, Yamabe H, Arii S, Tobe T, Kannagi R. Tissue distribution of 2-3 and 2-6 sialyl Lewisa antigens and significance of the ratio of two antigens for the differential diagnosis of malignant and benign disorders of the digestive tract.Cancer 1991; 67: 1576–1587.

    PubMed  CAS  Google Scholar 

  24. Saito S, Taguchi K, Nishimura N, Watanabe A, Ogoshi K, Niwa M, Furukawa T, Takahashi M. Clinical usefulness of computer-assisted diagnosis using combination assay of tumor markers for pancreatic carcinoma.Cancer 1993; 72: 381–388.

    PubMed  CAS  Google Scholar 

  25. Kobayashi T, Kawakubo T. Prospective investigation of tumor markers and risk assessment in early cancer screening.Cancer 1994; 73: 1946–1953.

    PubMed  CAS  Google Scholar 

  26. Niederau C, Grendell JH. Diagnosis of pancreatic carcinoma. Imaging techniques and tumor markers.Pancreas 1992; 7: 66–86.

    PubMed  CAS  Google Scholar 

  27. Kyriakos RJ, Shih LB, Ong GL, Patel K, Goldenberg DM, Mattes MJ. The fate of antibodies bound to the surface of tumor cells in vitro.Cancer Res 1992; 52: 835–842.

    PubMed  CAS  Google Scholar 

  28. Khawli LA, Miller GK, Epstein AL. Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors.Cancer 1994; 73: 824–831.

    PubMed  CAS  Google Scholar 

  29. Mattes MJ, Griffths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells.Cancer 1994; 73: 787–793.

    PubMed  CAS  Google Scholar 

References

  1. Metzgar RS, Hollingsworth MA, Kaufman B. Pancreatic mucins, inThe Pancreas: Biology, Pathology, and Disease, 2nd ed., Go, VLW et al, eds., Raven, New York 1993; pp. 351–367.

    Google Scholar 

  2. Singhal A, Hakomori S. Molecular change in carbohydrate antigens associated with cancer.Bioessays 1990; 12: 223–230.

    PubMed  CAS  Google Scholar 

  3. Gendler SJ, Spicer AP, Lalani EN, Duhig T, Peat N, Burchell J, Pemberton L, Boshell M, Taylor- Papadimitriou J. Structure and biology of a carcinoma-associated mucin, MUCLAm Rev Respir Dis 1991; 144: S42-S47.

    PubMed  CAS  Google Scholar 

  4. Lan MS, Hollingsworth MA, Metzgar RS. Polypeptide core of a human pancreatic tumor mucin antigen.Cancer Res 1990;50:2997–3001.

    PubMed  CAS  Google Scholar 

  5. Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells.Proc Natl Acad Sci. USA 1989; 86: 7159–7163.

    PubMed  CAS  Google Scholar 

  6. Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J, McKenzie IFC, Bast RC, Finn OJ. Cytotoxic T Lymphocytes derived from breast adenocarcinoma patients recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells.Cancer Res 1991; 51: 2908–2916.

    PubMed  CAS  Google Scholar 

  7. Nishimori I, Johnson NR, Sanderson SD, Perini F, Mount-joy K, Cerny RL, Gross ML, Hollingsworth MA. The influence of acceptor substrate primary amino acid sequence on the activity of human uridine diphosphate-N- acetylgalactosamine:polypeptide N-acetylgalactosamin-yltransferase: studies with the MUC1 tandem repeat.J Biol Chem 1994; 269:16,123–16,130.

    CAS  Google Scholar 

  8. Aubert J-P, Porchet N, Crepin M, Duterque-Coquillaud M, Vergnes G, Mazzuca M, Debuire B, Petitprez D, Degand P. Evidence for different human tracheobronchial mucin peptides deduced from nucleotide cDNA sequences.Am J Respir Cell Mol Biol 1991; 5: 178–185.

    PubMed  CAS  Google Scholar 

  9. Devine PL, Layton GT, ClarkB A, Birrell GW, Ward BG, Xing P-X, McKenzie IFC. Production of MUCl andMUC2 mucins by human tumor cell lines.Biochem Biophys Res Commun 1991; 178: 593–599.

    PubMed  CAS  Google Scholar 

  10. Devine PL, McKenzie IFC. Mucins: Structure, function, and associations with malignancy.Bioessays 1992; 14: 619–625.

    PubMed  CAS  Google Scholar 

  11. Ogata S, Uehara H, Itzkowitz SH. Mucin gene expression in colonic tissues and cell lines.Cancer Res 1992; 52:5971- 5978.

    PubMed  CAS  Google Scholar 

  12. Baeckstrom D, Hansson GC, Nilsson O, Johansson C, Gendler SJ, Lindholm L. Purification and characterization of a membrane-bound and a secreted mucin type glycoprotein carrying the carcinoma-associated sialyl Le A epitope on distinct core proteins.J Biol Chem 1991; 266: 21,537–21,547.

    CAS  Google Scholar 

  13. Hollingsworth MA, Strawhecker JK, Caffrey TC, Mack DR. Expression of MUCl, MUC2, MUC3, and MUC4 mucin mRNA in human pancreatic and intestinal tumor cell lines.Int J Cancer 1994; 57: 198–203.

    PubMed  CAS  Google Scholar 

  14. Gambus G, De Bolus D, Andreu D, Franci C, Egeva G, Real FX. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines.Gastroenterology 1994; 104: 93–102.

    Google Scholar 

  15. Porchet N, Nguyen VC, Dufosse J, Audie JP, Guyonnet-Duperat V, Gross MS, Denis C, Degand ?, Bernheim A, Aubert JP. Molecular cloning and chromosomal localization of a novel tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs.Biochem Biophysic Res Commun 1991; 175: 414–422.

    CAS  Google Scholar 

  16. Zotter S, Hageman PC, Lossnitzner A, Mooi WJ, Hilgers J. Tissue and tumor distribution of human polymorphicepithelial mucin. Cancer Rev 1988; 11-12: 55–101.

    Google Scholar 

References

  1. Heeckt P, Safi F, Binder T, Büchler M. Freie intraperitoneale Tumorzellen beim Pankreaskarzinom-Bedeu- tung für den klinischen Verlauf und die Therapie.Chirurg 1992; 63: 563–567.

    PubMed  CAS  Google Scholar 

  2. Warshaw AL. Implications of peritoneal cytology for staging of early pancreatic cancer.Am J Surg 1991; 161: 26–30.

    PubMed  CAS  Google Scholar 

  3. Henne-Bruns D, Kremer B, Meyer-Pannwitt U, Vogel I, Schröder S. Partial duodenopancreatectomy with radical lymphadenectomy in patients with pancreatic and periampullary carcinomas: initial results.Hepato-Gastroenterol 1993; 40: 145–149.

    CAS  Google Scholar 

  4. Trede M, Schwall G, Saeger H-D. Survival after pancreatoduodenectomy.Ann Surg 1990; 211(4): 447–58.

    PubMed  CAS  Google Scholar 

  5. Gerhard M, Juhl H, Kalthoff H, Schreiber H-W, Wagener C, Neumaier M. Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction.J Clin Oncol 1994; 12(4): 725–729.

    PubMed  CAS  Google Scholar 

  6. Juhl H, Stritzel M, Wroblewski A, Henne-Bruns D, Kremer B, Schmiegel W, Neumaier M, Wagener C, Schreiber HW, Kalthoff H. Immunocy to logical detection of micrometastatic cells: comparative evaluation of findings in the peritoneal cavity and the bone marrow of gastric, colorectal and pancreatic cancer patients.Int J Cancer 1994; 57: 330–335.

    PubMed  CAS  Google Scholar 

References

  1. Dimagno EP, Buxton JL, Regan PT, Hattery RR, Wilson DA, Suareg JR, Green PS. Ultrasonic endoscope.Lancet 1980; 1:629–631.

    PubMed  CAS  Google Scholar 

  2. Strohm WD, Phillip J, Hagenmuller F, Classen M. Ultrasonic tomography by means of ultrasonic fiberscope.Endoscopy 1980; 12: 241–244.

    PubMed  CAS  Google Scholar 

  3. Lees WR. The pancreas: differential diagnosis and pancreatitis.Gastrointest Endosc Clin North Am 1992; 2: 657–672.

    Google Scholar 

  4. Snady H. Endoscopic ultrasonography images of the normal retroperitoneum.Gastrointest Endosc Clin North Am 1992; 2: 637–656.

    Google Scholar 

  5. Rosch T, Classen M.Gastroenterologic Endosonography. Thieme, Stuttgart/New York 1992; pp. 114–169.

    Google Scholar 

  6. Vilmann P, Hancke S, Henriksen FW, Jacobsen GK. Endosonographic guided fine needle aspiration biopsy of malignant lesions in the upper gastrointestinal tract.Endoscopy 1993; 25: 523–527.

    PubMed  CAS  Google Scholar 

  7. Furukawa T, Tsukamota Y, Naitoh Y, Mitake M, Hirooka Y, Hayakawa T. Differential diagnosis of pancreatic diseases with an intraductal ultrasound system.Gastrointest Endosc 1994; 40: 213–219.

    PubMed  CAS  Google Scholar 

  8. Palazzo L, Roseau G, Gayet B, Vilgrain V, Belghiti J, Fekete F, Paolaggi JA. Endoscopic ultrasonography in adeno- carcinoma of the pancreas. Results of a prospective study with comparison to ultrasonography and CT scan.Endoscopy 1993; 25: 143–150.

    PubMed  CAS  Google Scholar 

  9. Rosch T, Lorenz R, Braig C, Feuerbach S. Siewert JR, Schudziarra V, Classen M. Endoscopic ultrasound in pancreatic tumor diagnosis.Gastrointest Endosc 1991; 37: 347–352.

    PubMed  CAS  Google Scholar 

  10. Yasuda K, Mukai H, Fujimoto S, Nakajima M, Kawai K. The diagnosis of pancreatic cancer by endoscopic ultrasonography.Gastrointest Endosc 1988; 34: 1–8.

    PubMed  CAS  Google Scholar 

  11. Kaufman AR, Sivak MV Jr. Endoscopic ultrasonography in the differential diagnosis of pancreatic disease.Gastrointest Endosc 1989; 35: 214–219.

    PubMed  CAS  Google Scholar 

  12. Tio TL. Endosonography in diagnosing and staging of pancreatic and ampullary tumor.Gastrointest Endosc Clin North Am 1992; 2: 673–684.

    Google Scholar 

  13. Beahrs OH, Henson DE, Hutter RVP, Kennedy BJ eds.Manual for Staging of Cancer, 4th ed. American Joint Committee on Cancer. Lippincott, Philadelphia 1992; pp. 57–61.

    Google Scholar 

  14. Rosch T, Braig C, Gain T, Feuerbach S, Siewert JR, Schusdziarra V, Classen M. Staging of pancreatic and ampullary carcinoma by endoscopic ultrasonography.Gastroenterology 1992; 102: 188–199.

    PubMed  CAS  Google Scholar 

  15. Tio TL, Tytgat GNJ. Evaluation of resectability of gastrointestinal tumors, inEndoscopic Ultrasonography in Gastroenterology, Kawai K, ed., Igaku Shoin, Tokyo/New York 1988; pp. 106–118.

    Google Scholar 

  16. Rosch T, Lightdale CJ, Botet JF, Boyce GA, Sivak MV Jr, Yasuda K, Heyder N, Palazzo L, Daucygier H, Schusdziarra V, Classen ML. Endosonographic localization of pancreatic endocrine tumors.N Engl J Med 1992; 326: 1721–1726.

    PubMed  CAS  Google Scholar 

References

  1. Kurzawinski T, Deery A, Davidson BR. Diagnostic value of cytology for biliary stricture.Br J Surg 1993; 80:414–421.

    PubMed  CAS  Google Scholar 

  2. Baron TH, Lee JG, Wax TD, Schmitt CM, Cotton PB, Leung JWC. An in vitro, randomized, prospective study to maximize cellular yield during bile duct brush cytology.Gastrointest Endosc 1994; 40: 14149.

    Google Scholar 

  3. Howell DA, Beveridge RP, Bosco J, Jones M. Endoscopic needle aspiration biopsy at ERCP in the diagnosis of biliary strictures.Gastrointest Endosc 1992; 38:531–535.

    PubMed  CAS  Google Scholar 

  4. Hawes RH, Sherman S, Wiersema M, Lehman GA. Tissue sampling of biliary strictures at ERCP.Gastrointest Endose 1994; 40: P111.

    Google Scholar 

  5. Aabakken L, Karesen R, Serck-Hanssen A, Osnes M. Transpapillary biopsies and brush cytology from the common bile duct.Endoscopy 1986; 18: 49–51.

    PubMed  CAS  Google Scholar 

  6. Howell DA, Beveridge RP, Bosco J, Jones M. Endoscopic needle aspiration biopsy at ERCP in the diagnosis of biliary strictures.Gastrointest Endosc 1992; 38: 531–535.

    PubMed  CAS  Google Scholar 

  7. Ryan ME. Cytologie brushings of ductal lesions during ERCP.Gastrointest Endose 1991; 37: 139–142.

    CAS  Google Scholar 

  8. Scudera PL, Koizumi J, Jacobson IM. Brush cytology evaluation of lesions encountered during ERCP.Gastrointest Endose 1990; 36: 281–284.

    CAS  Google Scholar 

  9. Venu RP, Geenen JE, Kini M, et al. Endoscopie retrograde brush cytology: a new technique.Gastroenterology 1990; 99:1475–1479.

    PubMed  CAS  Google Scholar 

  10. Foutch PG. Diagnosis of cancer by cytologie methods performed during ERCP (editorial).Gastrointest Endose 1994; 40: 249–252.

    CAS  Google Scholar 

  11. Ryan ME, Baldauf MC. Comparison of flow cytometry for DNA content and brush cytology for detection of malignancy in pancreaticobiliary strictures.Gastrointest Endose 1994; 40: 133–139.

    CAS  Google Scholar 

  12. Ferrari AP, Lichtenstein DR, Slivka A, Chang C, Carr-Locke DL. Brush cytology during ERCP for the diagnosis of biliary and pancreatic malignancies.Gastrointest Endose 1994; 40: 140–145.

    Google Scholar 

  13. Mohandas KM, Swaroop VS, Gullar SU, Dave UR, Jagannath P, DeSouza LJ. Diagnosis of malignant obstructive jaundice by bile cytology: results improved by dilating the bile duct strictures.Gastrointest Endosc 1994; 40: 150–154.

    PubMed  CAS  Google Scholar 

  14. Nakaizumi A, Tatsuta M, Uehara H, et al. Cytologic examination of pure pancreatic juice in the diagnosis of pancreatic carcinoma.Cancer 1992; 70: 2610–2614.

    PubMed  CAS  Google Scholar 

  15. Sawada Y, Gonda H, Hayashida Y. Combined use of brushing cytology and endoscopie retrograde pancreatography for the early detection of pancreatic cancer.Acta Cytologica 1989; 33: 870–874.

    PubMed  CAS  Google Scholar 

  16. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood.Cancer Epidemiol Biomarkers Prev 1994; 3: 67–71.

    PubMed  CAS  Google Scholar 

  17. Yip, CKY, Leung JWC, Chan MKM, Metreweli C. Scrape biopsy of malignant biliary stricture through percutaneous transhepatic biliary drainage tracts.AJR 1989; 152:529,530.

    PubMed  CAS  Google Scholar 

  18. Tada M, Omata M, Kawai S, et al. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma.Cancer Res 1993; 53: 2472–2474.

    PubMed  CAS  Google Scholar 

  19. Kondo H, Sugano K, Fukayama N, et al. Detection of point mutations in the k-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma.Cancer 1994; 73:1589–1594.

    PubMed  CAS  Google Scholar 

References

  1. Greengard P. Phosphorylated proteins as physiological effectors.Science 1978; 199: 146–152.

    PubMed  CAS  Google Scholar 

  2. Hunter T. A thousand and one protein kinases.Cell 1987; 50: 823,824.

    PubMed  CAS  Google Scholar 

  3. Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases.Ann Rev Biochem 1988; 57: 443–478.

    PubMed  CAS  Google Scholar 

  4. Blackshear PJ, Nairn AC, Kuo JF. Protein kinases 1988: a current perspective.FASEB J 1988; 2: 2957–2969.

    PubMed  CAS  Google Scholar 

  5. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases.Neuron 1992; 9: 383–391.

    PubMed  CAS  Google Scholar 

  6. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction.Cell 1991; 64: 281–302.

    PubMed  CAS  Google Scholar 

  7. Bishop JM. Molecular themes in oncogenesis.Cell 1991; 64: 235–248.

    PubMed  CAS  Google Scholar 

  8. Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways.Trends Biochem Sci l993; 18: 128–131.

    Google Scholar 

  9. Lee TH, Turck C, Kirschner MW. Inhibition of cdc2 activation by INH/PP2A.Mol Bio Cell 1994; 5: 323–338.

    CAS  Google Scholar 

  10. Lin HY, Lodish HF. Receptors for the TGF-beta super-family: multiple polypeptides and serine/threonine kinases.Trends Cell Biol 1993; 3: 1419.

    Google Scholar 

  11. Palfrey HC, Nairn AC, Muldoon LL, Villereal ML Rapid activation of calmodulin dependent protein kinase m in mitogen-stimulated human fibroblasts.J Biol Chem 1987; 2: 9785–9792.

    Google Scholar 

  12. Blenis J, Kuo CJ, Erickson RL. Identification of ribosomal protein S6 kinase regulated by transformation and growth- promoting stimuli.J Biol Chem 1987; 262: 14,373-14,376.

    Google Scholar 

  13. Coussens L, Parker PJ, Rhee R, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways.Science 1986; 233: 853–866.

    PubMed  Google Scholar 

  14. Housey GM, Johnson MD, Hsiao WLW, O’Brian CA, Murphy JP, Kirschmeier P, Weinstein IB. Overproduction of protein kinase C causes disordered growth control in rat fibroblasts.Cell 1988; 52: 343–354.

    PubMed  CAS  Google Scholar 

  15. Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth.Physiological Rev 1993; 73: 673–699.

    CAS  Google Scholar 

  16. Brautigan DL. Great expectations: protein tyrosine phosphatases in cell regulation.Biochimica et Biophysica 1992; 1114: 63–77.

    CAS  Google Scholar 

  17. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes.Science 1991; 253: 401–406.

    PubMed  CAS  Google Scholar 

  18. Cadena DL, Gill GN. Receptor tyrosine kinases.FASEB J 1992; 6: 2332–2337.

    PubMed  CAS  Google Scholar 

  19. Pawson T, Schlessinger J. SH2 and SH3 domains.Curr Biol 1993; 3: 434–442.

    PubMed  CAS  Google Scholar 

  20. Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA, Schlessinger J. A new function for a phosphotyrosine phosphatase: linking GRB2-S0S to a receptor tyrosine kinase.Mol Cell Biol 1994; 14: 509–517.

    PubMed  CAS  Google Scholar 

  21. Hunter T. Cooperation between oncogenes.Cell 1991; 64: 249–270.

    PubMed  CAS  Google Scholar 

  22. Marshall CJ. Tumor suppressor genes.Cell 1991; 64: 313–326.

    PubMed  CAS  Google Scholar 

  23. Almoguera C, Shibata D, Forrester K, Martin J, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988; 53: 549–554.

    PubMed  CAS  Google Scholar 

  24. Grunewald K, Lyons J, Frohlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartran CR. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas.Int J Cancer 1989; 43: 1037–1041.

    PubMed  CAS  Google Scholar 

  25. Pallen CJ. The receptor e protein tyrosine phosphatase alpha a role in cell proliferation and oncogenesis.Semin Cell Biol 1993; 4: 403–408.

    PubMed  CAS  Google Scholar 

  26. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers.Science 1991; 253: 49–53.

    PubMed  CAS  Google Scholar 

  27. O’Rourke RW, Miller CW, Kato GJ, Simon KJ, Chen DL, Dang CV, Koeffler HP. A potential transcriptional activation element in the p53 protein.Oncogene 1990; 5: 1829–1832.

    PubMed  CAS  Google Scholar 

  28. Haines DS, Landers JE, Engle LJ, George DL. Physical and functional interaction between wild-type p53 and mdm2 proteins.Mol Cell Biol 1994; 14: 1171–1178.

    PubMed  CAS  Google Scholar 

  29. Harper JW, Adsmi GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip 1 is a potent inhibitor of G l cyclin-dependent kinases.Cell 1993; 75: 805,806.

    PubMed  CAS  Google Scholar 

  30. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchler M, Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha.J Clin Invest 1992; 90: 1352–1360.

    PubMed  CAS  Google Scholar 

  31. Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, Onda M,Kobrin MS, Korc M. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage.Cancer Res 1993; 53: 5289–5296.

    PubMed  CAS  Google Scholar 

  32. Kobrin MS, Yamana Y, Friess H, Lopez ME, Korc M. Aberrant expression of type I fibroblast growth factor receptor in human pancreatic adenocarcinomas.Cancer Res 1993; 53: 4741–4744.

    PubMed  CAS  Google Scholar 

  33. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Klöppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DP, Lemoine NR. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.Br J Cancer 1991; 64: 1076–1082.

    PubMed  CAS  Google Scholar 

  34. Graham C, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, Korc M. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis.Cancer Lett 1993; 69: 151–160.

    Google Scholar 

  35. Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele H-G, Honold G, Pantel K, Riethmuller G, Scherer E, Maurer J, Maacke H, Deppert W. p53 and K-RAS alterations in pancreatic epithelial cell lesions.Oncogene 1992; 8: 289–298.

    Google Scholar 

  36. Hohne MW, Halatsch ME, Kahl GF, Weinel RJ. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma.Cancer Res 1992; 52: 2616–2619.

    PubMed  CAS  Google Scholar 

  37. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M. Enhanced expression of transforming growth factor (β isoforms in pancreatic cancer correlates with decreased survival.Gastroenterology 1993; 105: 1846–1856.

    PubMed  CAS  Google Scholar 

  38. Friess H, Yamanaka Y, Buchler M, Beger HG, Kobrin MS, Baldwin RL, Korc M. Enhanced expression of the type II transforming growth factor-beta receptor in human pancreatic cancer cells without alteration of type III receptor expression.Cancer Res 1993; 53: 1–4.

    Google Scholar 

References

  1. Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG. Microinjection of a protein-tyrosine-phosphatase inhibits insulin action inXenopus oocytes.Proc Natl Acad Sci USA 1990; 87: 5514–5518.

    PubMed  CAS  Google Scholar 

  2. Klarlund JK. Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins.Cell 1985; 41: 707–717.

    PubMed  CAS  Google Scholar 

  3. Hierowski MT, Liebow C, Dusapin K, Schally AV. Stimulation by somatostatin of dephosphorylation of membrane proteins in pancreatic cancer MIA PaCa-2 cell line.FEBS Lett 1985; 179: 252–256.

    PubMed  CAS  Google Scholar 

  4. Liebow C, Hierowski M, Dusapin K. Hormonal control of pancreatic cancer growth.Pancreas 1986; 1: 44–48.

    PubMed  CAS  Google Scholar 

  5. Liebow C, Lee MT, Kamer AR, Schally AV. Regulation of luteinizing hormone releasing hormone receptor binding by heterologous and autologous receptor stimulated tyrosine phosphorylation.Proc Natl Acad Sci USA 1991; 88: 2244–2248.

    PubMed  CAS  Google Scholar 

  6. Liebow C, Lee MT, Schally AV. Antitumor effects of somatostatin mediated by the stimulation of tyrosine phosphatase.Metab 1990; 39S: 163–166.

    Google Scholar 

  7. Liebow C, Reilly C, Serrano M, Schally AV. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase.Proc Natl Acad Sci USA 1989; 86: 2003–2007.

    PubMed  CAS  Google Scholar 

  8. Hunter T. Protein-tyrosine phosphatases: the other side of the coin.Cell 1989; 58: 1013–1016.

    PubMed  CAS  Google Scholar 

  9. Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, Ricca G, Jaye M, Schlessinger J. Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain.Proc Natl Acad Sci USA 1990; 87: 7000–7004.

    PubMed  CAS  Google Scholar 

  10. Krueger NX, Streuli M, Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases.EMBO J 1990; 9: 3241–3252.

    PubMed  CAS  Google Scholar 

  11. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes.Science 1991; 253: 401–253.

    PubMed  CAS  Google Scholar 

  12. Fischer EH, Tonks NK, Charbonneau H, Cicirelli MF, Cool DE, Diltz CD, Krebs EG, Walsh KA. Protein tyrosine phosphatases: a novel family of enzymes involved in transmembrane signalling.Adv Second Messenger Phosphoprotein Res 1990; 24: 273–279.

    PubMed  CAS  Google Scholar 

  13. Lee MT, Liebow C, Kamer AR, Schally AV. Effects of epidermal growth factor and analogues of luteinizing hormone releasing hormone and somatostatin on phosphorylation and dephosphorylation of tyrosine residues of specific protein substrates in various tumors.Proc Natl Acad Sci USA 1991; 88: 1656–1660.

    PubMed  CAS  Google Scholar 

  14. Pinski J, Milovanovic S, Yano T, Hamaoui A, Radulovic S, Cal R, Schally AV. Biological activity and receptor binding characteristics to various human tumors of acetylated somotostain analogs.Proc Soc Exp Bio Med 1992; 200: 49–56.

    CAS  Google Scholar 

  15. Nguyen L, Chapdelanine A, Chevalier S. Prostatic acid phosphatase in serum of patients with prostatic cancer is a specific phosphotyrosine acid phosphatase.Clin Chem 1990; 36: 1450–1455.

    PubMed  CAS  Google Scholar 

  16. Sap J, D’ustachio P, Givol D, Schlessinger J. Cloning and expression of a widely expressed receptor tyrosine phosphatase.Proc Natl Acad Sci USA 1990; 87: 6112–6116.

    PubMed  CAS  Google Scholar 

  17. Tsukamoto T, Takahashi T, Ueda R, Hibi K, Saito H. Molecular analysis of the protein tyrosine phosphatase τ gene in human lung cancer cell lines.Cancer Res 1992; 52: 3506–3509.

    PubMed  CAS  Google Scholar 

  18. Liebow C, Crean DH, Schally AV, Mang TS. Peptide analogues induce alterations in progression of premalignant lesions as measured by Photofrin fluorescence.Proc Natl Acad Sci USA 1993; 90: 1897–1901.

    PubMed  CAS  Google Scholar 

  19. Crean DH, Liebow C, Mang TS. Somatostatin and LHRH tyrosine phosphatase receptor induction during carcinogenesis.J Dent Reg 1994; 73: 201.

    Google Scholar 

  20. Fish EN, Ghislain J, Trogadis J, Stevens JK. Inhibitory effects of α-interferon on epidermal growth factor-mediated receptor-dependent events.Cancer Res 1993; 53: 5148–5157.

    PubMed  CAS  Google Scholar 

  21. Buscail L, Delesque N, Esteve JP, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV, Vaysse N, Susini C. Stimulation of tyrsosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by the human SSTR1 and SSTR2 somatostatin receptor subtypes.Proc Natl Acad Sci USA 1994; 91: 2315–2319.

    PubMed  CAS  Google Scholar 

  22. Liebow C, Kamer AR. Receptor phosphatases and cancer: models for the therapeutic efficacy of somatostatin and LHRH analogues.Cancer J 1992; 5: 200–207.

    CAS  Google Scholar 

References

  1. Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnquist H, Larsson J. Pancreatic cancer is associated with impaired glucose metabolism.Eur J Surg 1993; 159: 101–107.

    PubMed  CAS  Google Scholar 

  2. Permert J, Adrian TE, Jacobsson P, Fruin B, Larsson J. Is the peripheral insulin resistance in pancreatic cancer caused by a tumor-associated factor?Am J Surg 1993; 165: 61–66.

    PubMed  CAS  Google Scholar 

  3. Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnquist H, Larsson J. Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer.Br J Surg 1993; 80: 1047–1050.

    PubMed  CAS  Google Scholar 

  4. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a novel neuropeptide like protein also present in normal islet cells.Proc Natl Acad Sci USA 1987; 84: 3881–3885.

    PubMed  CAS  Google Scholar 

  5. Leighton B, Cooper GJS. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro.Nature 1988; 335: 632–635.

    PubMed  CAS  Google Scholar 

  6. Permert J, Larsson J, Westermark G, Pour PM, Westermark P, Adrian TE. Islet amyloid poly peptide in pancreatic cancer patients with diabetes.N Engl J Med 1994; 330: 313–318.

    PubMed  CAS  Google Scholar 

  7. Permert J, Larsson J, von Schenck H, Adrian TE. Islet hormone secretion in pancreatic cancer patients.Digestion 1992; 52: 111.

    Google Scholar 

  8. Permert J, Kazakoff K, Herrington MK, Adrian TE, Pour PM. Insulin and IAPP changes in the hamster pancreatic cancer model.Gastroenterology 1992; 102: A285.

    Google Scholar 

  9. Sheriff S, Fischer JE, Balasubramaniam A. Amylin inhibits insulin-stimulated glucose uptake in C2C12muscle cell line through a cholera-toxin-sensitive mechanism.Biochim Biophys Acta Mol Cell Res 1992; 1136: 219–228.

    CAS  Google Scholar 

  10. Ciaraldi TP, Goldberg M, Odom R, Stolpe M. In vitro effects of amylin on carbohydrate metabolism in liver cells.Diabetes 1992; 41: 975–981.

    PubMed  CAS  Google Scholar 

  11. Arnelo U, Larsson J, Permert J, Westermark P, Reidelberger RD, Adrian TE. Could islet amyloid polypeptide contribute to the cachexia of pancreatic cancer?Gastroenterology 1993; 104: A294.

    Google Scholar 

References

  1. Poston GJ, Gillespie J, Guillou PJ. The biology of pancreatic cancer.Gut 1991; 32: 800–812.

    PubMed  CAS  Google Scholar 

  2. Schally AV. Oncological application of somatostatin analogues.Cancer Res 1988; 48: 6977–6985.

    PubMed  CAS  Google Scholar 

  3. Schally AV. Hypothalamic Hormondes: from neuroendocrinology to cancer therapy.Anticancer Drugs 1994; 5: 115–130.

    PubMed  CAS  Google Scholar 

  4. Schally AV, Comaru-Schally AM, Hollander V. Hypothalamic and other peptide hormones, inCancer Medicine, 3rd ed., Hollander JR, Frei E, Bast RC, Kufe DW, Morton DL, Weichselbaum RR, eds., Lea & Febiger, Philadelphia, PA 1993; pp. 827–840.

    Google Scholar 

  5. Cullinan S, Moertel CG, Wieand HS, Schutt AJ, Krook JE, Foley JF, Norris BD, Kardinal CG, Tschetter LK, Barlow JF. A phase III trial on the therapy of advanced pancreatic carcinoma. Evaluations of the Mallinson regimen and combined 5-Fluorouracil, Doxorubicin, and Cisplatin.Cancer 1990; 65: 2207–2212.

    PubMed  CAS  Google Scholar 

  6. Theve NO, Pousette A, Carlstrom K. Adenocarcinoma of the pancreas—a hormone sensitive tumor? A preliminary report on Nolvadex treatment.Clin Oncology 1983; 9:193–197.

    CAS  Google Scholar 

  7. FitzGerald D, Pastan I. Targeted toxin therapy for the treatment of cancer.J Natl Cancer Inst 1989; 81: 1455- 1463.

    PubMed  CAS  Google Scholar 

  8. Srkalovic G, Cai RZ, Schally AV. Evaluation of receptors for somatostatin in various tumors using different analogs.J Clin Endocrin Metab 1990; 70: 661–669.

    CAS  Google Scholar 

  9. Qin Y, Ertl T, Cai RZ, Halmos G, Schally AV. Inhibitory effect of bombesin receptor antagonist RC-3095 on the growth of human pancreatic cancer cells in vivo and in vitro.Cancer Res 1994; 54: 1035–1041.

    PubMed  CAS  Google Scholar 

  10. Avis FP, Maneckjee R, Cuttitta F, Nakanishi Y, Mulshine J, Avis I. The role of gastrin releasing peptide in a pancreatic tumorcell line (CAPAN).Proc Am Assoc Cancer Res 1988; 29: 54.

    Google Scholar 

  11. Varga JM. Hormone-drug conjugates.Methods Enzymol 1985; 112:259–269.

    PubMed  CAS  Google Scholar 

  12. Tritton TR, Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells.Science 1982; 217: 248–250.

    CAS  Google Scholar 

  13. Bajusz S, Janaky T, Csernus VJ, Bokser L, Fekete M, Srkalovic G, Redding TW, Schally AV. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone.Proc Natl Acad Sei USA 1989; 86: 6313–6317

    CAS  Google Scholar 

  14. Bajusz S, Janaky T, Csernus VJ, Bokser L, Fekete M, Srkalovic G, Redding TW, Schally AV. Highly potent 10 analogues of luteinizing hormone-releasing hormone containing D-phenylalanine nitrogen mustard in position 6.Proc Natl Acad Sei USA 1989; 86: 6318–6322.

    CAS  Google Scholar 

  15. Janaky T, Juhasz A, Bajusz S, Csernus V, Srkalovic G, Bokser L, Milovanovic S, Redding TW, Rekasi Z, Nagy A, Schally AV. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.Proc Natl Acad Sei USA 1992; 89: 972–976.

    CAS  Google Scholar 

  16. Pinski J, Schally AV, Yano T, Szepeshazi K, Halmos G, Groot K, Comaru-Schally AM, Radulovic S, Nagy A. Inhibition of growth of experimental prostate cancer in rats by LH-RH analogs linked to cytotoxic radicals.Prostate 1993; 23: 165–178.

    PubMed  CAS  Google Scholar 

  17. Szepeshazi K, Schally AV, Juhasz A, Nagy A, Janaky T. Effect of LH-RH analogs containing cytotoxic radicals on growth of estrogen independent MXT mouse mammary arcinoma in vivo.Anticancer Drugs 1992; 3: 109–116.

    PubMed  CAS  Google Scholar 

  18. Radulovic S, Nagy A, Szoke B, Schally AV. Cytotoxic analog of somatostatin containing methotrexate inhibits growth of MIA PaCa-2 human pancreatic cancer xenografts in nude mice.Cancer Lett 1992; 62: 263–271.

    PubMed  CAS  Google Scholar 

  19. Cai RZ, Szoke B, Lu E, Fu D, Redding TW, Schally AV. Synthesis and biological activity of highly potent octapeptide analogs of somatostatin.Proc Natl Acad Sci USA 1986; 83: 1896–1900.

    PubMed  CAS  Google Scholar 

  20. Radulovic S, Cai RZ, Serfozo P, Groot K, Redding TW, Pinski J, Schally AV. Biological effects and receptor binding affinities of new pseudononapeptide bombesin/ GRP receptor antagonists with N-terminal D-Trp or D-Tpi.Int J Peptide Protein Res 1991; 38: 593–600.

    CAS  Google Scholar 

References

  1. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao S-L. Soluble normal and mutated DNA sequences from single-copy genes in human blood.Cancer Epidemiol Biomarkers Prev 1994; 3: 67–71.

    PubMed  CAS  Google Scholar 

References

  1. Hubchak S, Mangino MM, Reddy MK, Scarpelli DG. Characterization of differentiated Syrian golden hamster pancreatic duct cells maintained in extended monolayer culture.In Vitro Cell Dev Biol 1990; 26: 889–897.

    PubMed  CAS  Google Scholar 

  2. Cherington PV, Smith BL, Pardee AB. Loss of epidermal growth factor requirement and malignant transformation.Proc Natl Acad Sci USA 1979; 76: 3937–3941.

    PubMed  CAS  Google Scholar 

  3. Chiang LC, Silnutzer J, Pipas JM, Barnes DW. Selection of transformed cells in serum-free media.In Vitro Cell Dev Biol 1985; 21: 707–712.

    PubMed  CAS  Google Scholar 

  4. Cerny WL, Mangold KA, Scarpelli DG. Activation of K- ras in transplantable pancreatic ductal adenocarcinomas of Syrian golden hamsters.Carcinogenesis 1990; 11: 2075–2079.

    PubMed  CAS  Google Scholar 

  5. Takahashi-Fuji A, Ishino Y, Shimada A. Practical application of fluorescence-based image analyzer for PCR single-stranded conformation polymorphism analysis used in detection of multiple point mutations.PCR Meth Applic 1993; 2: 323–327.

    Google Scholar 

  6. Chang K-W, Mangold KA, Hubchak S, Laconi S, Scarpelli DG. Genomic p53 mutation in a chemically induced hamster pancreatic ductal adenocarcinoma.Cancer Res 1994; 54: 3878–3883.

    PubMed  CAS  Google Scholar 

  7. Mangold KA, Hubchak S, Mangino MM, Laconi S, Scarpelli DG. In vitro carcinogenesis of hamster pancreatic duct cells: cellular and molecular alterations.Carcinogenesis, accepted for publication.

  8. Kokkinakis DM. Differences in DNA-guanine alkyl- ation between male Sprague-Dawley rats and Syrian hamsters following exposure to a single dose of pancreatic nitrosamine carcinogens.Chem Res Toxicol 1990; 3: 150–156.

    PubMed  CAS  Google Scholar 

  9. Morimoto K, Dolan ME, Scicchitano D, Pegg AE. Repair of 06-alkylguanine-DNA alkyltransferases from rat liver andE. coll. Carcinogenesis 1985; 6: 1027–1031.

    PubMed  CAS  Google Scholar 

  10. Shepard JG, Chen J-R, Tsao M-S, Duguid WP. Neoplastic transformation of propagable cultured rat pancreatic duct epithelial cells by azaserine and streptozotocin,Carcinogenesis 1993; 14: 1027–1033.

    Google Scholar 

  11. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M. Coexpression of epidermal growth factor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness.Anticancer Res 1993; 13: 565–570.

    PubMed  CAS  Google Scholar 

  12. Fries H, Kobrin MS, Korc M. Acidic and basic fibroblast growth factors and their receptors are expressed in human pancreas.Pancreas 1992; 7: 737.

    Google Scholar 

  13. Kobrin MS, Yamanaka Y, Friess H, Lopez ME, Korc M. Aberrant expression of type 1 fibroblast growth factor receptor in human pancreatic adenocarcinomas.Cancer Res 1993; 53: 4741–4744.

    PubMed  CAS  Google Scholar 

  14. Scarpelli DG, Rao MS. Transplantable ductal adenocarcinoma of the Syrian hamster pancreas.Cancer Res 1979; 39: 452–458.

    PubMed  CAS  Google Scholar 

References

  1. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview.Cancer and Metastasis Review 1992; 11: 95–103.

    CAS  Google Scholar 

  2. Schwartzman RA, Cidlowslci JA. Apoptosis: The biochemistry and molecular biology of programmed cell death.Endocrine Rev 1993; 14: 133–151.

    CAS  Google Scholar 

  3. Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology, inInternational Review of Experimental Pathology, vol. 32, 1991; pp. 223–254.

    PubMed  CAS  Google Scholar 

  4. Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis.Int Rev Cytol 1980; 68: 251–306.

    PubMed  CAS  Google Scholar 

  5. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation.Nature 1980; 284: 555–556.

    PubMed  CAS  Google Scholar 

  6. Tomei LD, Kanter P, Wenner CE. Inhibition of radiation- induced apoptosis in vitro by tumor Promoters.Biochemical Biophys Res Comm 1988; 155: 324–331.

    CAS  Google Scholar 

  7. Knox KA, Johnson GD, Gordon J. A study of protein kinase C isozyme distribution in relation to Bcl-2 expression during apoptosis of epithelial cells in vivo.Exp Cell Res 1993; 207: 68–73.

    PubMed  CAS  Google Scholar 

  8. Fesus L, Thomazy V, Autuori F, Ceru MP, Taresa E, Piacentini M. Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transgluta- minase action.FEBS Lett 1989; 245: 150–154.

    PubMed  CAS  Google Scholar 

  9. Korsmeyer S J. Bcl-2 initiates a new category of oncogenes: regulators of cell death.Blood 1992; 80: 879–886.

    PubMed  CAS  Google Scholar 

  10. Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M, Olson CA, Korsmeyer S, Buttyan R. Detection of the apoptosis-suppressingoncoprotein bcl-2 in hormone-refractory human prostate cancers.Am J Pathol 1993; 143: 390–400.

    PubMed  CAS  Google Scholar 

  11. Arends MJ, McGregor AH, Toft NJ, Brown EJH, Wyllie AH. Susceptibility of apoptosis is differentially regulated byc-myc and mutated Ha-ras oncogenes and is associated with endonuclease availability.Br J Cancer 1993; 68: 1127–1133.

    PubMed  CAS  Google Scholar 

  12. Shi Y, Glynn JM, Guilbert LJ, Cotter TG, Bissonnette RP, Green DR. Role forc-myc in activation-induced apoptotic cell death in T cell hybridomas.Science 1992; 257: 212–214.

    PubMed  CAS  Google Scholar 

  13. Vaux DL. Toward an understanding of the molecular mechanisms of physiological cell death.Proc NatlAcadSci USA 1993; 90: 786–789.

    CAS  Google Scholar 

  14. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-Depen- dent apoptosis modulates the cytotoxicity of anticancer agents.Cell 1993; 74: 957–967.

    PubMed  CAS  Google Scholar 

  15. Szende B, Zalatnai A, Schally AV. Programmed cell death (apoptosis) in pancreatic cancers of hamsters after treatment with analogs of both luteinizing hormone-releasing hormone and somatostatin.Proc Nad Acad Sci USA 1989; 86: 1643–1647.

    CAS  Google Scholar 

  16. Szende B, Srkalovic G, Schally AV, Lapis K, Groot K. Inhibitory effects of analogs of luteinizing hormone- releasing hormone and somatostatin on pancreatic cancers in hamsters.Cancer 1990; 65: 2279–2290.

    PubMed  CAS  Google Scholar 

  17. Szepeshazi K, Lapis K, Schally AV. Effect of combination treatment with analogs of luteinizing hormone-releasing hormone (LH-RH) or somatostatin and 5-Fluorouracil on pancreatic cancer in hamsters.Int J Cancer 1991; 49: 260–266.

    PubMed  CAS  Google Scholar 

  18. Szepeshazi K, Schally A V, Cai RZ, Radulovic S, Milovanovic S, Szoke B. Inhibitory effect of bombesin/gastrin-releasing peptide antagonist RC-3095 and high dose of somatostatin analogue RC-160 on nitrosamine-induced pancreatic cancers in hamsters.Cancer Res 1991; 51: 5980–5986.

    PubMed  CAS  Google Scholar 

  19. Szepeshazi K, Schally AV, Groot K, Halmos G. Effect of bombesin, gastrin-releasing peptide (GRP)(14-27) and bombesin/GRP receptor antagonist RC-3095 on growth of nitrosamine-induced pancreatic cancers in hamsters.Int J Cancer 1993; 54: 282–289.

    PubMed  CAS  Google Scholar 

  20. Pour P, Salmasi SZ, Runge RG. Selective induction of pancreatic ductular tumors by single doses ofN-nitrosobis (2-oxopropyl)amine in Syrian golden hamsters.Cancer Lett 1978; 4: 317–323.

    PubMed  CAS  Google Scholar 

  21. Derenzini M, Trere D. Importance of interphase nucleolar organizer regions in tumor pathology.Virchows Arch B Cell Pathol 1991; 61: 1–8.

    CAS  Google Scholar 

  22. Szepeshazi K, Korkut E, Schally AV. Decrease in the AgNOR number in Dunning R3327 prostate cancers after treatment with an agonist and antagonist of luteinizing hormone-releasing hormone.Amer J Pathol 1991; 138: 1273–1277.

    CAS  Google Scholar 

  23. Kyprianou N, English HF, Isaacs JT. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation.Cancer Res 1990; 50: 3748–3753.

    PubMed  CAS  Google Scholar 

  24. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJH, Cornelisse CJ, van Dierendonck JH. A new method to detect apoptosis in paraffin sections:in situ end-labeling of fragmented DNA.J Histochem Cytochem 1993; 41: 7–12.

    PubMed  CAS  Google Scholar 

  25. Deckers CLP, Lyons AB, Samuel K, Sanderson A, Maddy AH. Alternative pathways of apoptosis induced by methyl- prednisolone and valinomycin analyzed by flow cytometry.Exp Cell Rev 1993; 208: 362–370.

    CAS  Google Scholar 

  26. Collins MKL, Rivas AL. The control of apoptosis in mammalian cells.TIBS 1993; 18: 307–309.

    PubMed  CAS  Google Scholar 

  27. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell 1993; 75: 241–251.

    PubMed  CAS  Google Scholar 

  28. Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE. Active cell death in hormone-dependent tissues.Cancer and Metastasis Rev 1992; 11: 197–220.

    CAS  Google Scholar 

  29. Hickman JA. Apoptosis induced by anticancer drugs.Cancer and Metastasis Rev 1992; 11: 121–139.

    CAS  Google Scholar 

  30. Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkienwicz, Z. The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents.Cancer Res 1993; 53: 3186–3192.

    PubMed  CAS  Google Scholar 

  31. Sorenson CM, Barry MA, Eastman A. Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin.J Natl Cancer Inst 1990; 82:749–755.

    PubMed  CAS  Google Scholar 

  32. Schimke RT, Mihich E. Fifth annual Pezcoller symposium: Apoptosis. (meeting report).Cancer Res 1994; 54: 302–305.

    PubMed  CAS  Google Scholar 

  33. Owens GP, Cohen JJ. Identification of genes involved in programmed cell death.Cancer and Metastasis Rev 1992; 149-156.

References

  1. Longnecker DS. Experimental models of exocrine pancreatic tumors, inThe Exocrine Pancreas: Biology, Patho- biology and Diseases, Go VLWG, Brooks FP, DiMagno EP, Gardner JD, Lebenthal E, Scheele GA, eds., Raven, New York 1986; pp. 443–458.

    Google Scholar 

  2. Longnecker DS. Experimental models of exocrine pancreatic tumors, inThe Exocrine Pancreas: Biology, Pathobiology, and Diseases, Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA, eds., Raven, New York 1993; pp. 551–564.

    Google Scholar 

  3. Monis B, Valentich MA. Promoting effects of mancozeb on pancreas of nitrosomethylurea-treated rats.Carcinogenesis 1993; 14:929–933.

    PubMed  CAS  Google Scholar 

  4. Longnecker DS, Roebuck BD, Yager JD Jr, Lilja HS, Siegmund B. Pancreatic carcinoma in azaserine-treated rats: induction, classification and dietary modulation of incidence.Cancer 1981; 47: 1562–1572.

    PubMed  CAS  Google Scholar 

  5. Longnecker DS, French J, Hyde E, Lilja HS, Yager JD Jr. Effect of age on nodule induction by azaserine and DNA synthesis in rat pancreas.J Natl Cancer Inst 1977; 58:1769–1775.

    PubMed  CAS  Google Scholar 

  6. Roebuck BD, Longnecker DS, Baumgartner KJ, Thron CD. Carcinogen-induced lesions in the rat pancreas: effects of varying levels of essential fatty acid.Cancer Res 1985; 45: 5252–5256.

    PubMed  CAS  Google Scholar 

  7. Bockman DE. Cells of origin of pancreatic cancer: experimental animal tumors related to human pancreas.Cancer 1981; 47: 1528–1534.

    PubMed  CAS  Google Scholar 

  8. Pettengill OS, Faris RA, Bell RH Jr, Kuhlmann ET, Longnecker DS. Derivation of duct-like cell lines from transplantable acinar cell carcinoma of the rat pancreas.Am J Pathol 1993; 143: 292–303.

    PubMed  CAS  Google Scholar 

  9. Appel MJ, Roverts G, Woutersen RA. Inhibitory effects of micronutrients on pancreatic carcinogenesis in azaserine- treated rats.Carcinogenesis 1991; 12: 2157–2161.

    PubMed  CAS  Google Scholar 

  10. Roebuck BD, Yager JD Jr, Longnecker DS, Wilpone SA. Promotion by unsaturated fat of azaserine-induced pancreatic carcinogenesis in the rat.Cancer Res 1981; 41: 3961–3966.

    PubMed  CAS  Google Scholar 

  11. Longnecker DS. Hormones and pancreatic cancer.Int J Pancreatol 1991; 9: 81–86.

    PubMed  CAS  Google Scholar 

  12. Douglas BR, Woutersen RA, Jansen JBMJ, de Jong AJL, Rovati LC, Lamers CBHW. Influence of cholecytokinin antagonist on the effects of cholecystokinin and bombesin on azaserine-induced lesions in rat pancreas.Gastroenterology 1989; 96: 462–469.

    PubMed  CAS  Google Scholar 

  13. Lhoste EP, Roebuck BD, Longnecker DS. Stimulation of the growth of azaserine-induced nodules in the rat pancreas by dietary camostate (FOY-305).Carcinogenesis 1988; 9: 901–906.

    PubMed  CAS  Google Scholar 

  14. Douglas BR, Woutersen RA, Jansen JBMJ, de jong AJL, Rovati LC, Lamers CBHW. Modulation by CR-1409 (Lorglumide), a cholecystokinin receptor antagonist, of trypsin inhibitor-enhanced growth of azaserine-induced putative preneoplastic lesions in rat pancreas.Cancer Res 1989; 49: 2438–2441.

    PubMed  CAS  Google Scholar 

  15. Longnecker DS, Chandar N, Sheahan DG, Janosky JE, Lombardi B. Preneoplastic and neoplastic lesions in the pancreas of rats fed choline-devoid or choline-supple- mented diets.Toxicol Pathol 1991; 19: 59–65.

    PubMed  CAS  Google Scholar 

  16. Bell RH, Kuhlmann ET, Jensen RT, Longnecker DS. Overexpression of cholecystokinin receptors in azaserine- induced neoplasms of the rat pancreas.Cancer Res 1992; 52: 3295–3299.

    PubMed  CAS  Google Scholar 

  17. Schaeffer BK, Zurlo J, Longnecker DS. Activation of c-K- ras not detectable in adenomas or adenocarcinomas arising in rat pancreas.Mol Carcinogen 1990; 3: 165–170.

    CAS  Google Scholar 

  18. van Kranen HJ, Vermeulen E, Schoren L, Bax J, Woutersen RA, van Iersel P, van Kreijl CF, Scherer E. Activation of c- K-ras is frequent in pancreatic carcinomas of Syrian hamsters, but is absent in pancreatic tumors of rats.Carcinogenesis 1991; 12: 1477–1482.

    PubMed  Google Scholar 

  19. Terhune PG, Heffess C, Longnecker DS. Human pancreatic acinar cell carcinomas contain only wild-type c-K-rascodons 12, 13 and 61.Mol Care 1994; 10: 110–114.

    CAS  Google Scholar 

References

  1. Pour PM, Donnelly T. The effect of cholecystoduodenostomy and choledochostomy in pancreatic carcinogenesis.Cancer Res 1978; 38: 2048–2051.

    PubMed  CAS  Google Scholar 

  2. Pour PM, Donnelly T, Stepan K, Muffly K. Modification of pancreatic carcinogenesis in the hamster model. 2. The effect of partial pancreatectomy.Am J Pathol 1983; 110: 75–82.

    PubMed  CAS  Google Scholar 

  3. Pour PM, Donnelly T, Stepan K. Modification of pancreatic carcinogenesis in the hamster model. 5. Effect of partial pancreatico-colostomy.Carcinogenesis 1983; 10: 1327–1331.

    Google Scholar 

  4. Mogaki M, Hirota M, Chaney WG, Pour, PM. Comparison of p53 protein expression and cellular localization in human and hamster pancreatic cancer cell lines.Carcinogenesis 1993; 14: 2589–2594.

    PubMed  CAS  Google Scholar 

  5. Pour PM, Egami H, Takiyam, Y. Patterns of growth and metastases of induced pancreatic cancer in relation to the prognosis and its clinical implications.Gastroenterology 1991; 100: 1–7.

    Google Scholar 

  6. Egami H, Tomioka T, Tempero M, Pour PM. Development of intrapancreatic transplantable model of pancreatic duct adenocarcinoma in Syrian golden hamsters.Am J Pathol 1991; 138: 557–561.

    PubMed  CAS  Google Scholar 

References

  1. Bockman DE. Cell of origin of pancreatic cancer: experimental animal tumors related to human pancreas.Cancer 1981; 47: 1528–1534.

    PubMed  CAS  Google Scholar 

  2. Frazier ML, Lilly BJ, Wu EF, Ota T, Hewett-Emmett D. Carbonic anhydrase II gene expression in cell lines from human pancreatic adenocarcinoma.Pancreas 1990; 5: 507–514.

    PubMed  CAS  Google Scholar 

  3. Fernandez E, Fallon MJ, Frazier ML, de Llorens R, Cuchillo CM. Expression of acinar and ductal products in Capan-1 cells growing in synthetic serum and serum-free media.Cancer 1994; 73: 2285–2295.

    PubMed  CAS  Google Scholar 

  4. Kim JH, Ho SB, Montgomery CK, Kim YS. Cell lineage markers in human pancreatic cancer.Cancer 1990; 66: 2134–2143.

    PubMed  CAS  Google Scholar 

  5. Rutter WJ, Kemp JD, Bradshaw WS, Clark WR, Ronzio RA, Sander TG. Regulation of specific protein synthesis in cytodifferentiation.J Cell Physiol 1968; 72(Suppl. 1): 1–18.

    PubMed  CAS  Google Scholar 

References

  1. Trautmann B, Schlitt HJ, Hahn EG, Löhr M. Isolation, culture, and characterization of human pancreatic duct cells.Pancreas 1993; 8: 248–254.

    PubMed  CAS  Google Scholar 

  2. Löhr M, Brenner DA, Rooney JF, Nelson JA. Application of the polymerase chain reaction in gastrointestinal endos-copy.Endoscopy 1992; 24: 779–781.

    Article  PubMed  Google Scholar 

  3. Löhr M, Trautmann B, Göttler M, Peters S, Zauner I, Maillei B, Klöppel G, Human ductal adenocarcinoma of the pancreas express extracellular matrix proteins.Br J Cancer 1994; 69: 144–151.

    PubMed  Google Scholar 

  4. Löhr M, Trautmann B, Peters S, Zauner I, Klöppel G, Kreuser ED. Expression and function of extracellular matrix receptors in human ductal adenocarcinoma of the pancreas. 1994; submitted.

  5. Löhr M, Hummel MF, Trautmann B, Ruf W, Edgington TS, Liebe S. Tissue factor in pancreatic adenocarcinoma.Gastroenterology 1994; 106: A304.

    Google Scholar 

  6. Löhr M, Trautmann B. Pancreatic cancer: stromal-epithelial interactions.Int J Pancreatol 1993; 14: 57, 58.

    Google Scholar 

References

  1. Longnecker DS, Curphey TJ. Adenocarcinoma of the pancreas in azaserine-treated rats.Cancer Res 1975; 35: 2249–2257.

    PubMed  CAS  Google Scholar 

  2. Dembinski AR, Johnson LR. Stimulation of pancreatic growth by secretin, cerulein, and pentagastrin. Endocrinology 1980; 106: 323–328.

    PubMed  CAS  Google Scholar 

  3. Folsch UR, Winckler K, Wormsley KG. Influence of repeated administration of cholecystokinin and secretin on the pancreas of the rat.Scand J Gastroenterol 1978; 13: 663–671.

    PubMed  CAS  Google Scholar 

  4. Levan LH, Green GM. Effect of diversion of bile-pancreatic juice to the ileum on pancreatic secretion and adaptation in the rat (42235).Proc Soc Exp Biol Med 1986; 181: 139–143.

    PubMed  CAS  Google Scholar 

  5. Dawra R, Saluja A, Lerch MM, Saluja M, Zavertnik A, Steer D, Steer ML. Trophic effect of cholecystokinin (CCK) is mediated by high affinity CCK receptors.Gastro-enterology 1991; 100: A270.

    Google Scholar 

  6. Povoski SP, Zhou W, Longnecker DS, Jensen RT, Mantey SA, Bell RH. Pancreatic growth in the rat is mediated specifically by cholecystokinin-A receptors.Pancreas 1993; 8: 769.

    Google Scholar 

  7. McGuinness EE, Morgan RGH, Levison DA, Frape DL, Hopwood D, Wormsley KG. The effects of long term feeding of soya flour on the rat pancreas.Scand J Gastro-enterol 1980; 15: 497–502.

    Article  CAS  Google Scholar 

  8. McGuinness EE, Morgan RGH, Levison DA, Hopwood D, Wormsley KG. Interaction of azaserine and raw soya flour on the rat pancreas.Scand J Gastroenterol 1981; 16: 49–56.

    PubMed  CAS  Google Scholar 

  9. Lhoste EF, Longnecker DS. Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas.Cancer Res 1987; 47: 3273–3277.

    PubMed  CAS  Google Scholar 

  10. Douglas BR, Wouterson RA, Jansen JGMJ, de Jong AJL, Rovati LC, Lamers CBHW. Influence of cholecystokinin antagonist on the effects of cholecystokinin and bombesin on azaserine-induced lesions in the rat pancreas.Gastroenterology 1989; 96: 462–69.

    PubMed  CAS  Google Scholar 

  11. Lhoste EF, Roebuck BD, Longnecker DS. Stimulation of the growth of azaserine-induced nodules in the rat pancreas by dietary camostate (FOY-305).Carcinogenesis 1988; 9: 901–906.

    PubMed  CAS  Google Scholar 

  12. Bell RH, Kuhlmann ET, Jensen RT, Longnecker DS. Overexpression of cholecystokinin receptors in azaserine-induced neoplasms of the rat pancreas.Cancer Res 1992; 52: 3295–3299.

    PubMed  CAS  Google Scholar 

  13. Povoski SP, Zhou W, Longnecker DS, Roebuck BD, Bell RH. Stimulation of the growth of azaserine-induced putative preneoplastic lesions in the rat pancreas is mediated specifically by way of cholecystokinin-A receptors.Cancer Res 1993; 53: 3925–3929.

    PubMed  CAS  Google Scholar 

  14. Bax J, Feringa AW, vanGarderen-Hoetmer A, Wouterson RA, Scherer E. Adenosine triphosphate, a new marker for the differentiation of putative precancerous foci induced in rat pancreas by azaserine.Carcinogenesis 1986; 7: 457–462.

    PubMed  CAS  Google Scholar 

References

  1. Dobelbower RR, Wagner SM, Fadell RJ, Howard JA, DiDio LA. Pancreatic cancer, inGastrointestinal Cancer: Radiation Therapy, Dobelbower RR, ed., Springer-Verlag, Hamburg 1990; pp. 115–148.

    Google Scholar 

  2. Mohiuddin M, Rosato F, Barbot D, Schuricht A, Biermann W, Cantor R. Long-term results of combined modality treatment with 1-125 implantation for carcinoma of the pancreas.IntJRadiat Oncol Biol Phys 1992; 23(2): 305–311.

    CAS  Google Scholar 

  3. Merrick HW III, Dobelbower RR. Aggressive therapy for cancer of the pancreas: Does it help? inGastro-enterology clinics of North America: Disorders of the Pancreas, Steinberg WM, ed., WB Saunders, London 1990; pp. 935–962.

    Google Scholar 

  4. Warszawski N, Bratengeier K, Bohndorf W. Interstitial HDR afterloading therapy with flexible catheters.Aktuelle Radiologie 1993; 3(3): 177–181.

    PubMed  CAS  Google Scholar 

  5. Warszawski N, Pfreundner L, Bratengeier K, Bohndorf W, Feustel H. Combined isodose curves of high-dose rate interstitial brachytherapy with external-beam radiation therapy in pancreatic carcinoma.Strahlentherapie Und Onkologie 1992; 168(9): 552–557.

    PubMed  CAS  Google Scholar 

  6. Order SE, Siegel JA, Lustig RA, Principato R, Zeiger LS, Johnson E, Zhang H, Lang P, Wallner PE. Infusional brachytherapy in the treatment of non-resectable pancreatic cancer: a new radiation modality (preliminary report of the phase I study).Antibody Immunoconj Radiophar 1994; 7(1): 11–27.

    Google Scholar 

  7. HiraokaT, Uchino R, Kanemitsu K, Toyonaga M, Saitoh N, Nakamura I, Tashiro S, Miyauchi Y. Combination of intraoperative radiation with resection of cancer of the pancreas.Int J Pancreatol 1990; 7(1–3): 201–207.

    Google Scholar 

  8. Ozaki H, Kinoshita T, Kosuge T, Egawa S, Kishi K. Effectiveness of multimodality treatment for resectable pancreatic cancer.Int J Pancreatol 1990; 7(1–3): 195–200.

    PubMed  CAS  Google Scholar 

  9. Kaiser MH, Ellenberg SS. Pancreatic cancer adjuvant combined radiation and chemotherapy following curative resection.Arch Surg 1985; 120: 899–903.

    Google Scholar 

  10. Douglass HO Jr. Pancreatic cancer: nihilism is obsolete!Pancreas 1987; 2(2): 230–232.

    PubMed  Google Scholar 

  11. Gastrointestinal Tumor Study Group. Further evidence of effective combined radiation and chemotherapy following curative resection of pancreatic cancer.Cancer 1987; 59: 2006–2010.

    Google Scholar 

  12. Ishikawa O, Ohhigashi H, Teshima T, Chatani M, Inoue T, Tanaka S, Kitamura T, Wada A, Sasaki Y, Imaoka S, Iwanaga T. Clinical and histopathological appraisal of preoperative irradiation for adenocarcinoma of the pancreaticoduodenal region.J Surg Oncol 1989; 40: 143–151.

    PubMed  CAS  Google Scholar 

  13. Weese JL, Nussbaum ML, Paul AR, Engstrom PF, Solin LJ, Kowalyshyn MJ, Hoffman JP. Increased resectability of locally advanced pancreatic and periampullary carcinoma with neoadjuvant chemoradiotherapy.Int J Pancreatol 1990; 7: 177–185.

    PubMed  CAS  Google Scholar 

  14. Dalton R, Hoffman J, Barber L, Eisenberg B. Influence of prior operative assessment and angiographic findings on resectability and survival in adenocarcinoma of the pancreas treated with preoperative chemoradiation.Abstract Book — 47th Annual Cancer Symposium, Society of Surgical Oncology, March 17-20, 1994, Houston, p. 23 (abstr).

  15. Jessup JM, Steele G Jr, Mayer RJ, Posner M, Busse P, Cady B, Stone M, Jenkins R, Osteen R. Neoadjuvant therapy for unresectable pancreatic adenocarcinoma.Arch Surg 1993; 128: 559–564.

    PubMed  CAS  Google Scholar 

  16. Gastrointestinal Tumor Study Group. Treatment of locally unresectable carcinoma of the pancreas: Comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone.J Natl Cancer Inst 1988; 80(10): 751–755.

    Google Scholar 

  17. Gastrointestinal Tumor Study Group. Radiation therapy combined with Adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic carcinoma.Cancer 1985; 56: 2563–2568.

    Google Scholar 

  18. Robertson JM, Marsh L, Ten Haken RK, Lawrence TS. The clinical application of a non-axial treatment plan for pancreatic and biliary malignancies.Radiother Oncol 1992; 24: 198–200.

    PubMed  CAS  Google Scholar 

  19. Treurniet-Donker AD, van Mierlo MJM, van Putten WLJ. Localized unresectable pancreatic cancer.Int J Radiat Oncol Biol Phys 1990; 18: 59–62.

    PubMed  CAS  Google Scholar 

  20. Antman KH, Corson JM. Benign and malignant pleural mesothelioma.Clin Chest Med 1985; 6: 127–140.

    PubMed  CAS  Google Scholar 

References

  1. Brennan MF, Kinsella TJ, Casper ES. Cancer of the pancreas, inCancer: Principles and Practice of Oncology, DeVita VT Jr, Hellman S, Rosenberg SA, eds., Lippincott, Philadelphia 1993; pp. 849–882.

    Google Scholar 

  2. Casper ES. Pancreas cancer: how can we progress? Editorial.EurJ Cancer 1993; 29A: 171.

    CAS  Google Scholar 

  3. Carter SK. The integration of chemotherapy into a combined modality approach for cancer treatment: VI. Pancreatic adenocarcinoma.Cancer Treat Rev 1975; 3: 193–214.

    Google Scholar 

  4. Kovach JS, Moertel CG, Schutt, Hahn RG, Reitemeier RJ. A controlled study of combined l,3-bis(2-chlorethyl)- 1-nitrosorea and 5-fluorouracil therapy for advanced gastric and pancreatic cancer.Cancer 1974; 33: 563–567.

    PubMed  CAS  Google Scholar 

  5. Hansen R, Quebbeman E, Ritch P, Chitambar C, Anderson T. Continuous 5-fluorouracil infusion in carcinoma of the pancreas: a phase II study.Am J Med Sci 1988: 295:91–93.

    PubMed  CAS  Google Scholar 

  6. Tajiri H, Yashimori M, Okazaki N, Miyaji M. Phase II study of continuous infusion of 5-fluorouracil in advanced pancreatic cancer.Oncology 1991; 48: 18–21.

    PubMed  CAS  Google Scholar 

  7. Bruckner HW, Crown J, McKenna A, Hart R. Leucovorin and 5-fluorouracil as a treatment for disseminated cancer of the pancreas and unknown primary tumors.Cancer Res 1988; 48: 5570–5572.

    PubMed  CAS  Google Scholar 

  8. DeCaprio JA, Arbuck SG, Mayer RJ. Phase II study of weekly 5-fluorouracil (5-FU) with folinic acid (FA) in previously untreated patients with unresectable measurable pancreatic adenocarcinoma.Proc ASCO 1989; 8: 388.

    Google Scholar 

  9. Crown J, Casper ES, Botet J, Murray P, Kelsen DP. Lack of efficacy of high-dose leucovorin and fluorouracil in patients with advanced pancreatic adenocarcinoma.J Clin Oncol 1991; 9: 1682–1686.

    PubMed  CAS  Google Scholar 

  10. Crooke ST, Bradner WT. Mitomycin C: a review.Cancer Treat Rev 1976; 3: 121–139.

    PubMed  CAS  Google Scholar 

  11. Carter SK. Mitomycin C (NSC-26980) Clinical brochure.Cancer Chemother Rep, Part 3 1968; 1: 99–114.

    CAS  Google Scholar 

  12. Schein PS, Lavin PT, Moertel CG, Frytak S, Hahn RG, O’Connell MJ, Reitemeier RJ, Rubin J, Schutt AJ, Weiland LH, Kaiser M, Barkin J, Lessner H, Mann-Kaplan R, Redlhammer D, Silverman M, Troner M, Douglass HO Jr, Milliron S, Lokich J, Brooks J, Chaffe J, Like A, Zamcheck N, Ramming K, Bateman J, Spiro H, Livstone E, Knowlton A. Randomized phase II clinical trial of adriamycin in advanced measurable pancreatic car- cinoma: a Gastrointestinal Tumor Study Group report.Cancer 1978; 42: 19–22.

    PubMed  CAS  Google Scholar 

  13. Wiggins RG, Wooley PV, MacDonald JS, Smythe T, Ueno W, Schein PS. Phase II trial of streptozotocin, mitomycin- C and 5-fluorouracil (SMF) in the treatment of advanced pancreatic cancer.Cancer 1978; 41: 387–391.

    Google Scholar 

  14. Bukowski RM, Aberhalden RT, Hewlett JS, Weick JS, Groppe CW Jr. Phase II trial of streptozotocin, mitomycin- C, and 5-fluorouracil in adenocarcinoma of the pancreas.Cancer Clin Trials 1980; 3: 321–324.

    PubMed  CAS  Google Scholar 

  15. Smith FP, Hoth DF, Levin B, Karlin DA, Macdonald JS, Woolley PV III, Schein PS. 5-Fluorouracil, adriamycin and mitomycin-C (FAM) chemotherapy for advanced adenocarcinoma of the pancreas.Cancer 1980; 46: 2014–2018.

    PubMed  CAS  Google Scholar 

  16. Bitran JD, Desser RK, Kozloff MF, Billings AA, Shapiro CM. Treatment of metastatic pancreatic and gastric adenocarcinoma with 5-fluorouracil, adriamycin, and mitomycin- C (FAM).Cancer Treat Rep 1979; 63: 2049–2051.

    PubMed  CAS  Google Scholar 

  17. Buroker T, Kim PN, Groppe C, McCracken J, O’Bryan R, Panettiere F, Costanzi J, Bottomly R, King GW, Bonnet J, Thigpen T, Whitecar J, Haas C, Vaitkevicius VK, Hoogstraten B, Heilbrun L. 5-FU infusion with mitomycin-C vs. 5-FU infusion with methyl-CCNU in the treatment of advanced upper gastrointestinal cancer. A Southwest Oncology Group study.Cancer 1979; 44: 1215–1221.

    PubMed  CAS  Google Scholar 

  18. Bukowski RM, Balcerzak SP, O’Bryan RM, Bonnet JD, Chen TT. Randomized trial of 5-fluorouracil and mitomycin C with or without streptozotocin for advanced pancreatic cancer. A Southwest Oncology Group Study.Cancer 1983; 52: 1577–1582.

    PubMed  CAS  Google Scholar 

  19. Oster MW, Gray R, Panasci L, Perry MC. Chemotherapy for advanced pancreatic cancer: a comparison of 5-fluorouracil, adriamycin, and mitomycin-C (FAM) with 5-fluorouracil, streptozotocin and mitomycin-C (FSM).Cancer 1986; 57: 29–33.

    PubMed  CAS  Google Scholar 

  20. Gastrointestinal Tumor Study Group. Phase II studies of drug combination in advanced pancreatic carcinoma: fluorouracil plus doxorubicin plus mitomycin-C plus fluorouracil.J Clin Oncol 1986; 4: 1794–1798.

    Google Scholar 

  21. Cullinan SA, Moertel CG, Fleming TR, Rubin JR, Krook JE, Everson LK, Windschitl HE, Twito DI, Marschke, Foley JF, Pfeifle DM, Barlow JF. A comparison of chemotherapeutic regimens in the treatment of advanced pancreatic and gastric carcinoma.JAMA 1985; 253: 2061–2067.

    PubMed  CAS  Google Scholar 

  22. Kelsen DP, Hudis C, Niedzwiecki D, Dougherty J, Casper E, Botet J, Vinceguerra V, Rosenbluth R. A phase II comparison trial of streptozotocin, mitomycin, and 5- fluorouracil with cisplatin, cytosine arabinoside, and caffeine in patients with advanced pancreatic carcinoma.Cancer 1991; 68: 965–969.

    PubMed  CAS  Google Scholar 

  23. Takeda S, Shimazoe T, Sato K, Sugimoto Y, Tsuruo T, Kono A. Differential expression of DNA topoisomerase I gene between CPT-11 acquired-and native-resistant human pancreatic tumor cell lines.Biochem Biophys Res Comm 1992; 184: 618–625.

    PubMed  CAS  Google Scholar 

  24. Spears CP, Gustavsson BG, Berne M Frösing R, Bernstein L, Hayes AA. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil.Cancer Res 1988; 48: 5894–5900.

    PubMed  CAS  Google Scholar 

References

  1. Sears HF, Steplewski Z, Herlyn D, Koprowski H. Effects of monoclonal antibody immunotherapy on patients with gastrointestinal adenocarcinoma.J Biol Rep Mod 1984; 3: 138–150.

    CAS  Google Scholar 

  2. Sears HF, Atkinson B, Mattis J, Ernst C, Herlyn D, Steplewski Z, Hayry P, Koprowski H. Phase I clinical trial of monoclonal antibody in treatment of gastrointestinal tumors.Lancet 1982; 1: 762–765.

    PubMed  CAS  Google Scholar 

  3. Tempero MA, Pour PM, Uchida E, Herlyn D, Steplewski Z. Monoclonal antibody CO 17-1A and leukopheresis in immunotherapy of pancreatic cancer.Hybridoma 1986; 5: S133-S138.

    PubMed  Google Scholar 

  4. Sears HF, Herlyn D, Steplewski Z, Koprowski H. Phase II clinical trial of a murine monoclonal antibody cytotoxic for gastrointestinal adenocarcinoma.Cancer Res 1985; 45: 5910–5913.

    PubMed  CAS  Google Scholar 

  5. Weiner LM, Moldofsky PJ, Gatenby RA, O’Dwyer J, O’Brien J, Litwin S, Comis RL. Antibody delivery and effector cell activation in a Phase II trial of recombinant gamma interferon and the murine monoclonal antibody CO 17-1A in advanced colorectal carcinoma.Cancer Res 1988; 48: 2568–2571.

    PubMed  CAS  Google Scholar 

  6. Sindelar WF, Maher MM, Herlyn D, Jeans HF, Steplewski Z, Koprowski H. Trial of therapy with monoclonal antibody 17-1A in pancreatic carcinoma: preliminary results.Hybridoma 1986; 5: S125-S132.

    PubMed  Google Scholar 

  7. Mellstadt H, Frodin J-E, Masucci G. Clinical status of monoclonal antibodies in the treatment of colorectal carcinoma.Oncology 1989; 3: 25–32.

    Google Scholar 

  8. Tempero MA, Sivinski C, Steplewski Z, Harvey E, Klassen L, Kay HD. Phase II trial of interferon gamma and monoclonal antibody 17-1A in pancreatic cancer: biologic and clinical effects.J Clin Oncol 1990; 12: 2019–2026.

    Google Scholar 

  9. Riethmuller G, Schneider-Gadicke E, Schlimok G, Schmiegel W, Raab R, Hoffken K, Gruber R, Pichlmaler H, Hirche H, Pichlmayr R, Buggisch P, Witte J. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma.Lancet 1994; 343: 1177–1183.

    PubMed  CAS  Google Scholar 

  10. LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayer J, Khazaeli MB. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response.Proc Nad Acad Sci USA 1989; 86: 4220–4224.

    CAS  Google Scholar 

  11. Haga Y, Sivinski CL, Woo D, Tempero MA. Dose-related comparison of antibody-dependent cellular cytotoxicity with chimeric and native murine monoclonal antibody 17- 1A: improved cytolysis of pancreatic cancer cells with chimeric 17-1 A.Int J Pancreatol 1994; 15: 43–50.

    PubMed  CAS  Google Scholar 

  12. Buchler M, Friess H, Schultheiss K-H, Gebhardt C, Kubel R, Muhrer K-H, Winkelmann M, Wagener T, Klapdor R, Kaul M, Muller G, Schulz G, Beger HG. A randomized controlled trial of adjuvant immunotherapy (murine monoclonal antibody 494/32) in resectable pancreatic cancer.Cancer 1991; 68: 1507–1512.

    PubMed  CAS  Google Scholar 

  13. Tempero M A, Takasaki H, Uchida E, Takiyama Y, Colcher D, Metzgar RS, Pour PM. Co-expression of CA 19-9, CA 125 and TAG-72 in pancreatic carcinoma.Am J Surg Pathol 1989; 13(Suppl. 1): 89–95.

    PubMed  Google Scholar 

  14. Ohuchi N, Thor A, Nose M, Fujita J, Kyogoku M, Schlom J. Tumor-associated glycoprotein (TAG-72) detected in adenocarcinomas and benign lesions of the stomach.Int J Cancer 1986; 38: 643–650.

    PubMed  CAS  Google Scholar 

  15. Muraro R, Kuroki D, Wunderlich D, Poole DJ, Colcher D, Thor A, Greiner JW, Simpson JF, Molinolo A, Noguchi P, Schlom J. Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor associated glycoprotein 72 antigen.Cancer Res 1988; 48: 4588–4596.

    PubMed  CAS  Google Scholar 

  16. Colcher D, Minelli MF, Roselli M, Muraro R, Simpson- Milenic D, Schlom J. Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies.Cancer Res 1988; 48: 4597–4603.

    PubMed  CAS  Google Scholar 

  17. Tempero MA, Colcher D, Dalrymple G, Harrison K, Holdeman K, Joshi S, Quadri S, Under J, Augustine S, Reed E, Leichner P. Cancer therapy using radioimmunoconjugates: implications for breast cancer.Ann NY Acad Sci 1993; 698: 406–417.

    PubMed  CAS  Google Scholar 

  18. Greiner JW, Guadagni F, Goldstein D, Smalley RV, Borden EC, Simpson JF, Molinolo A, Schlom J. Intraperitoneal administration of interferon-gamma to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carcinoembryonic antigen on malignant ascites cells.J Clin Oncol 1992; 10: 735–746.

    PubMed  CAS  Google Scholar 

  19. Goldenberg DM, Goldenberg H, Sharkey RM, Lee RE, Higgenbotham-Ford E, Horowitz J, Hall TC, Pinsky C, Hansen HJ. Imaging of colorectal carcinoma with radio- labeled antibodies.Semin Nucl Med 1989; 19: 262–281.

    PubMed  CAS  Google Scholar 

  20. Kosmas C, Kalofonos HP, Epenetos AA. Radiolabelled monoclonal antibodies in tumour diagnosis and therapy.Dev Biol Stand 1990; 71: 93–102.

    PubMed  CAS  Google Scholar 

  21. DeNardo SJ, Warhoe KA, O’Grady LF, Hellstrom I, Hellstrom KE, Mills SL, Macey DJ, Goodnight JE, DeNardo GL. Radioimmunotherapy for breast cancer: treatment of a patient with 1-131 L6 chimeric monoclonal antibody.Int J Biol Markers 1991; 6: 221–230.

    PubMed  CAS  Google Scholar 

  22. Welt S, Divgi CR, Real FX, Yeh SD, Garin-Chesa P, Finstad CL, Sakamoto J, Cohen A, Sigurdson ER, Kemeny N, Carswell EA, Oettgen HF, Old LJ. Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33.J Clin Oncol 1990; 8: 1894–1906.

    PubMed  CAS  Google Scholar 

References

  1. UICC. TNMClassification of Malignant Tumours 4th ed., 2nd rev. 1992, Hermanek P, Sobin LH, eds., Springer, Berlin 1992; pp. 71–73.

    Google Scholar 

  2. AJCC.Manual for Staging of Cancer, 4th ed., Beahrs OH, Henson DE, Hutter RVP, Kennedy BJ, eds., Lippincott, Philadelphia 1992; pp. 109–111.

    Google Scholar 

  3. Moossa AR, Levin B. The diagnosis of “early” pancreatic cancer. The University of Chicago experience.Cancer 1981; 47: 1688–1697.

    PubMed  CAS  Google Scholar 

  4. Endo M, Yoshino K, Kawano T. Recent advances in the diagnosis and treatment of superficial esophageal cancer, inRecent Advances in Management of Digestive Cancers, Takahashi T, ed., Springer, Tokyo 1993; pp. 64–66.

    Google Scholar 

  5. Hiki Y, Shimao H, Mieno H. Endoscopic surgery for gastric cancer, inRecent Advances in Digestive Cancer, Takahashi T, ed., Springer, Tokyo 1993; pp. 98–103.

    Google Scholar 

  6. Hermanek P, Gall FP. Early (microinvasive) colorectal carcinoma.Int J Colored Dis 1986; 1: 79–84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longnecker, D.S., Pour, P.M., Scarpelli, D.G. et al. Investigational strategies for detection and intervention in early-stage pancreatic cancer. Int. J. Pancreatol. 16, 183–310 (1994). https://doi.org/10.1007/BF02944330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02944330

Navigation