Skip to main content
Log in

Lactic acid production by pellet-formRhizopus oryzae in a submerged system

  • Session 1 Thermal, Chemical, and Biological Processing
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rhizopus oryzae NRRL 395 produces optically pureL(+)-lactic acid that is highly preferred for the production of environmentally benign polymers. With xylose as the carbon source for cultivation, it can be self-immobilized as pellets with a size of about 1mm. Repeated usage of the same pellets by transferring them into fresh media every time when the glucose was exhausted over a period of 22 d yielded 1742 or 2001 g/L lactic acid total (based on 100-mL working volume) depending on the media used. Lactic acid is known to be a strong inhibitor for both growth and production, and it can be removed continuously by the adsorption on the PVP resin. With the fermenter-adsorber system, the fermentation can be performed as effectively as the ones with added neutralizing agents, such as calcium carbonate and sodium hydroxide. One problem of the fermenter-adsorber system is that lower production was obtained than in shake flasks; hence, proper reactor design is necessary to improve the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vickory, T. B. (1985), inComrehensive Biotechnology, vol. 3, Moo-Young, M., ed., Pergamon, New York, pp. 761–776.

    Google Scholar 

  2. Lipinsky, E. S. and Sinclair, R. G. (1986),Chem. Eng. Proc. 82, 26.

    CAS  Google Scholar 

  3. Lipinsky, E. S. (1981),Science 212, 1465.

    Article  CAS  Google Scholar 

  4. Lockwood, L. B., Ward, G. E., and May, O. E. (1936),J. Ag. Res. 53, 849.

    CAS  Google Scholar 

  5. Schopmeyer, H. H. (1954), inIndustrial Fermentations, vol. 1, Underkofler, L. A. and Hickey, R. J., eds., Chemical Pub., Co., New York, pp. 391–419.

    Google Scholar 

  6. Ward, G. E., Lockwood, L. B., Tabenkin, B., and Welles, P. A. (1938),I&EC 30, 1233.

    Article  CAS  Google Scholar 

  7. Hang, K. D., Hamamci, H., and Woodams, E. E. (1989),Biotechnol. Lett. 11, 119.

    Article  CAS  Google Scholar 

  8. Tamada, M., Begum, A. A., and Sadi, S. (1992),J. Fer. Bioeng. 74, 379.

    Article  CAS  Google Scholar 

  9. Hamamci, H., and Ryu, D. (1994),Appl. Biochem. Biotechnol. 44, 125.

    Article  CAS  Google Scholar 

  10. Iyser, G. M. (1992), Ph. D. thesis, Purdue University, West Lafayette, IN.

  11. Ward, G. E., Lockwood, L. B., May, O. E., and Herrick, H. T. (1936),J. Am. Chem. Soc. 58, 1286.

    Article  CAS  Google Scholar 

  12. Friedmam, M. R. and Gaden, E. R., Jr. (1970),Biotechnol. Bioeng. 12, 961.

    Article  Google Scholar 

  13. Stieber, R. W. and Gerhardt, P. (1981),Biotechnol. Bioeng. 23, 535.

    Article  CAS  Google Scholar 

  14. Davison, B. H. and Thampson, J. E. (1992),Appl. biochem. Biotechnol. 34, 431.

    Article  Google Scholar 

  15. Huang, F. (1987), Ph.D. thesis, Purdue University.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.W., Lu, Z. & Tsao, G.T. Lactic acid production by pellet-formRhizopus oryzae in a submerged system. Appl Biochem Biotechnol 51, 57–71 (1995). https://doi.org/10.1007/BF02933411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933411

Index Entries

Navigation