Skip to main content
Log in

A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiolsulfonate groups

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new method for the reversible immobilization of thiol bimolecules, e.g., thiolpeptides and thiolproteins, to beaded agarose and other solid phases is reported. The method consists of an activation and a coupling step. The activation is based on oxidation of disulfides (or thiol groups via disulfides) present in a solid phase by hydrogen peroxide at moderately acidic pH. This oxidation leads to disulfide oxides (thiolsulfinate groups of which the majority are further oxidized to thiolsulfonate). The thiolsulfonate groups react easily with thiol compounds, which become immobilized via disulfide bonds. The pH range for thiol coupling is wide (pH 5-8), but for most thiols the reaction seems to proceed faster at pH>7. The stability of the reactive group to hydrolysis, especially at neutral and weakly acidic pH, is very high. The activated gel, therefore, can be stored as a suspension at pH 5 for extended periods. The method has been used to reversibly immobilize glutathione, β-galactosidase, alcohol dehydrogenase, urease, and papain, all with exposed thiol groups as well as thiolated bovine serum albumin and sweet-potato β-amylase.

Depending on the thiol content of starting thiol-agarose, thiol-sulfonate-agarose derivatives with different binding capacities can be obtained. Thus, up to 5.0 mg (16 μmol) glutathione and 15 mg thiol-protein/mL gel derivative have been immobilized.

The gel bead can be regenerated and reused at least twice. Besides agarose, cellulose, crosslinked dextran, and polyacrylamide were shown to be very suitable as supports for solid-phase thiolsulfonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryéden, L. and Carlsson, J. (1989),Protein Purification, Janson J. C. and Rydén, L., eds., VCH, New York, pp. 252–274.

    Google Scholar 

  2. Brocklehurst, K., Carlsson, J., Kierstan, M., and Crook, E. (1973),Biochem. J. 133, 573.

    CAS  Google Scholar 

  3. Carlsson, J.,Axén, R., Brocklehurst, K., and Crook, E. (1974),Eur. J. Biochem. 44, 189.

    Article  CAS  Google Scholar 

  4. Svensson, A., Carlsson, J., and Eaker, D. (1977),FEBS Lett. 73, 171.

    Article  Google Scholar 

  5. Rydén, L. and Norder, H. (1981),J. Chromatogr. 215, 341.

    Article  Google Scholar 

  6. Rydén, L. and Eaker, D. (1983),Eur. J. Biochem. 132, 241.

    Article  Google Scholar 

  7. Field, L. and Khim, Y. (1972),J. Org. Chem. 37, 2710.

    Article  CAS  Google Scholar 

  8. Isenberg, N. (1973),Int. J. Sulfur Chem. 8, 307.

    Google Scholar 

  9. Smith, D. J., Maggio, E. T., and Kenyon, G. L. (1975),Biochemistry 14, 766.

    Article  CAS  Google Scholar 

  10. Bruice, T. W. and Kenyon, G. L. (1977),Methods in Enzymology, Colowick, S. P. and Kaplan, N. O., eds., vol. 47, Academic, New York, p. 407.

    Google Scholar 

  11. Carnevale, J. and Healey, K. (1982),Anal. Chim. Acta 140, 143.

    Article  CAS  Google Scholar 

  12. Carlsson, J. and Batista-Viera, F. (1991),Biotechnol. Appl. Biochem.,14, 114.

    CAS  Google Scholar 

  13. Axén, R., Drevin, H., and Carlsson, J. (1975),Acta Chem. Scand. [B]29, 471.

    Article  Google Scholar 

  14. Carlsson, J., Drevin, H., and Axén, R. (1978),Biochem. J. 173, 723.

    CAS  Google Scholar 

  15. Barnard, D. and Cole, E. R. (1959),Anal. Chim. Acta 20, 540.

    Article  CAS  Google Scholar 

  16. Bernfeld, P. (1955),Methods in Enzymology, Colowick, S. P. and Kaplan, N. O., eds., vol. 1, Academic, New York, p. 149.

    Chapter  Google Scholar 

  17. Manjón, A., Llorca, F. I., Bonete, M. J., Bastida, J., and Iborra, J. L. (1985),Process Biochem. 20, 17.

    Google Scholar 

  18. Vallee, B. L. and Hoch, F. L. (1955),Proc. Natl. Acad. Sci. USA 41, 327.

    Article  CAS  Google Scholar 

  19. Torshinsky, Y. M. (1981),Sulfur in Proteins, Metzler, D., ed., Pergamon, Oxford, p. 53.

    Google Scholar 

  20. Brocklehurst, K. and Little, G. (1973),Biochem. J. 133, 67.

    CAS  Google Scholar 

  21. Carlsson, J., Jansson, J. C. and Sparrman, M. (1989),Protein Purification, Jansson, J. C. and Rydén, L., eds., VCH, New York, pp. 291–308.

    Google Scholar 

  22. Kluger, R. and Tsui, W.-C. (1980),Can. J. Biochem. 58, 629.

    Article  CAS  Google Scholar 

  23. Oscarsson, S. and Porath, J. (1989),Anal. Biochem. 176, 330.

    Article  CAS  Google Scholar 

  24. Carlsson, J. and Svensson, A. (1974),FEBS Lett. 42, 183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista-Viera, F., Barbieri, M., Ovsejevi, K. et al. A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiolsulfonate groups. Appl Biochem Biotechnol 31, 175–195 (1991). https://doi.org/10.1007/BF02921788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921788

Index Entries

Navigation