Skip to main content
Log in

Seed physiology: From ovule to maturing seed

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

  1. 1)

    The future of the seed is partly predetermined by events (flower formation, flowering, nutrient flow from mother plant, etc.) preceding fertilization and the formation of the gametophyte.

  2. 2)

    The environmental conditions under which the seed matures affect its final physiological constitution. This faet has mostly been neglected by seed physiologists.

  3. 3)

    It is not known how far the triantic nature of the diaspore (seed coat, pulp, etc., 2n of mother plant, embryon of δ +n of Φ, endosperm 2n of Φ +n of δ) affects seed development and germination.

  4. 4)

    The integuments of the ovules of some species have stomata. It is not known if they are functional in gas exchange or are constitutional non-functioning relics.

  5. 5)

    The causes of the growth-degeneration pattern of the nucellus are unknown.

  6. 6)

    During the development of the megaspore mother cell into the mature embryo sac dramatic cellular ultrastructural changes take place. This probably signifies a “change of guards” during which the gametophyte is freed from part of the controls by the ultrastructural units of the mother plant, preparing the ground after fertilization for a new, genetically independent sporophyte.

  7. 7)

    Upon closer examination, the seemingly simple processes of fertilization and embryogenesis, as described in textbooks, turn out to be very complex and full of problems. Is the role each male nucleus plays preordained or is it left to chance which male nucleus goes where? What causes the degeneration of the synergids and of the vegetative nucleus, and what protects the other two male nuclei from a similar fate? Which ultrastructural organelles are carried by the generative nuclei into their respective receptor cells and what is their role in them? Why do zygotes in some species develop after fertilization immediately into an embryo whereas in other species the zygote remains dormant for some time? What causes the polarity of the egg cell which, after fertilization, divides into one developmentally most active apical cell (giving rise to the embryo) and into another “lazy” basal cell which develops into the suspensor of “unknown function?”

  8. 8)

    In the source-sink relationship between photosynthesizing organs and the maturing seed there is one point at which the photosynthates pass from symplast to apoplast to symplast. The mechanism involved is largely unknown as well as the effect which environmental conditions have on this transport.

Zusammenfassung

  1. 1)

    Das Schicksal des Samens wird zum Teil durch Ereignisse bestimmt (Blütenbildung, Blühen, Nährstoffzufuhr von der Mutterpflanze u. s. w.), die der Befruchtung und der Bildung des Gametophyten vorausgehen.

  2. 2)

    Die Umweltsbedingungne, unter denen der Samen reift, beeinflussen seine physiologische Konstitution. Die meisten Samenphysiologen haben diese Tatsache nicht genügend beachtet.

  3. 3)

    Es ist nicht bekannt, wie weit die triantische Natur der Diaspore (Samenschale, Perisperm etc., 2n der Mutterpflanze,n δ + n Φ des Embryos, 2n Φ +n δ des Endosperms) Samenentwicklung und Keimung beeinflussen.

  4. 4)

    Die Integumente der Samenanlagen haben bei manchen Pflanzen Spaltöffnungen. Es ist unbekannt, ob diese eine Rolle im Gasaustausch spielen oder ob sie nur konstitutionelle nichtfunktionelle Relikte sind. 145

  5. 5)

    Die Ursachen des anfänglichen Wachstums und der folgenden Degeneration de Nuzellus sind nicht bekannt.

  6. 6)

    Während der Entwicklung der Embryosackmutterzelle zum Embryosack findet eine fundamentale Änderung der zellulären Ultrastruktur statt. Die Bedeutung dieser Änderung liegt möglicherweise darin, dass sich durch sie der Gametophyt von der Kontrolle durch die ultrastrukturellen Organellen der Mutterpflanze befreit und somit die Basis für einen nach der Befruchtung genetisch unabhängigen Sporophyt gelegt wird.

  7. 7)

    Bei näherer Betrachtung zeigt sich, dass Befruchtung und Embryoentwicklung, die in den Lehrbüchern meist als unkomplizierte Vorgänge dargestellt sind, äusserst komplexe und problematische Prozesse sind. Ist die Rolle der beiden generativen Kerne prädestiniert oder ist es dem Zufall überlassen, wohin jeder der beiden Kerne wandert? Was ist die Ursache der Degeneration der Synergiden und des vegetativen Kerns, und was schützt die beiden generativen Kerne vor einem ähnlichen Los? Welche ultrastrukturellen Organellen wandern mit den generativen Kernen in ihre respektiven Rezeptorzellen, und welche Rolle spielen sie dort? Warum entwickeln sich in einigen Arten die Zygoten direkt nach der Befruchtung zu Embryonen während sie in anderen Arten für oft lange Zeiträume im Ruhezustand bleiben? Was verursacht die Polarität der Eizelle, welche sich nach der Befruchtung in eine entwicklungsmässig äusserst aktive apikale Zelle, aus der sich der Embryo entwickelt, teilt, und in eine basale “träge” Zelle, die sich zum Suspensor “unbekannter Funktion” entwickelt?

  8. 8)

    An einem bestimmten Punkt der Leitungsbahn, durch die Assimilate der photosynthetisierenden Organe in die reifenden Samen befördert werden, passieren die Assimilate vom Symplast zum Apoplast zum Symplast. Sowohl Transportmechanismus als auch der Einfluss von Aussenbedingungen auf ihn sind im grossen Ganzen unbekannt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Abernathy, R. H., R. G. Palmer, R. Shibles andJ. C. Anderson. 1977. Histological observations on abscising and retained soybean flowers. Can. J. Pl. Sci.57: 713–716.

    Google Scholar 

  • Adepipe, N. O., R. A. Fletcher andD. P. Ormrod. 1976. Distribution of (14C) assimilates in the cowpea (Vigna unguiculata L.) in relation to fruit abscission and treatment with benzyladenine. Ann. Bot. (London)40: 731–737.

    Google Scholar 

  • Bentwood, B. J. andJ. Cronshaw. 1978. Cytoplasmic localization of adenosine triphosphatase in the phloem ofPisum sativum and its relation to the function of transfer cells. Planta140: 111–120.

    Article  CAS  Google Scholar 

  • Bewley, J. D. andM. Black. 1978. Physiology and biochemistry of seeds in relation to germination. 1. Development, germination and growth. Springer-Verlag, Berlin.

    Google Scholar 

  • Bhatnagar, S. P. andB. M. Johri. 1972. Pages 77–149in T. T. Kozlowski (ed.), Seed biology, Vol. 1. Academic Press, New York and London.

    Google Scholar 

  • Brighigna, L., A. C. Fiordi andM. R. Palandri. 1980. The possible role of a fibrous body in the generative cell of the pollen grain ofTillandsia caput-medusae Morr. (Bromeliaceae). Amer. J. Bot.67: 1493–1494.

    Article  Google Scholar 

  • Cavazza, L. 1950. Recherches sur l’imperméability des graines dures chez les légumineuses. Ber. Schweiz. Bot. Ges.60: 596–610.

    CAS  Google Scholar 

  • Cooper, D. C. 1943. Haploid-diploid twin embryos inLilium andNicotiana. Amer. J. Bot.30: 408–413.

    Article  Google Scholar 

  • Corner, E. J. 1976. The seeds of dicotyledons. Cambridge Univ. Press, New York.

    Google Scholar 

  • Cresti, M., J. L. Van Went, M. T. M. Willemse andE. Pacini. 1976. Fibrous masses and cell and nucleus movement in the pollen tube ofPetunia hybrida. Acta Bot. Néerl.25: 381–383.

    Google Scholar 

  • Crosby, K. E., L. H. Aung andG. R. Buss. 1981. Influence of 6-benzylaminopurine on fruit-set and seed development in two soybean,Glycine max (L.) Merr genotypes. Pl. Physiol. (Lancaster)68: 985–988.

    CAS  Google Scholar 

  • Dickinson, H. G. andJ. Heslop-Harrison. 1977. Ribosomes, membranes and organelles during meiosis in angiosperms. Philos. Trans. B,277: 327–342.

    Article  CAS  Google Scholar 

  • Dure, L. S. 1975. Seed formation. Annual Rev. Pl. Physiol.26: 259–278.

    Article  CAS  Google Scholar 

  • Egli, D. B. 1975. Rate of accumulation of dry weight in seed of soybeans and its relationship to yield. Can. J. Plant Sci.55: 215–219.

    Article  Google Scholar 

  • Evenari, M. 1980/81. The history of germination research and the lesson it contains for today. Israel J. Bot.29: 4–21.

    Google Scholar 

  • — 1984. Seed physiology: Its history from antiquity to the beginning of the 20th century. Bot. Rev.50(2): 119–142.

    Google Scholar 

  • Fahn, A. 1982. Plant anatomy. Pergamon Press, Inc., New York.

    Google Scholar 

  • Felker, F. C. andJ. C. Shannon. 1980. Movement of14C labeled assimilates into kernels ofZea mays L. Pl. Physiol. (Lancaster)65: 804–870.

    Google Scholar 

  • Grundwag, M. andA. Fahn. 1969. The relation of embryology to the low seed set inPistacia vera (Anacardiaceae). Phytomorphology19: 225–235.

    Google Scholar 

  • Guignard, L. 1893. Récherches sur le dévelopment de la graine et en particulier du tégument séminale. J. de Bot. 7.

  • Haberlandt, G. 1877. Die Schutzeinrichtungen in der Entwicklung der Keimpflanze. Verlag Carl Gerold’s Sohn, Wien.

    Google Scholar 

  • — 1884. Physiologische Pflanzenanatomie. W. Engelmann, Leipzig.

    Google Scholar 

  • Hardham, A. R. 1976. Structural aspects of the pathways of nutrient flow to the developing embryo and cotyledons ofPisum sativum L. Austr. J. Bot.24: 711–721.

    Article  Google Scholar 

  • Hay, R. E., E. B. Earley andE. E. DeTurk. 1953. Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Pl. Physiol. (Lancaster)28: 606–621.

    CAS  Google Scholar 

  • Hedley, C. L., D. M. Harvey andR. J. Keely. 1975. Role of PEP carboxylase during seed development ofPisum sativum. Nature258: 352–354.

    Article  CAS  Google Scholar 

  • Hofmeister, W. 1851. Vergleichende Untersuchungen über die Keimung, Entfaltung und Fruchtbidung höherer Kryptogamen (Moose, Farne, Equisetaceen, Rhizocarpeen und Lycopodiaceen) und der Samenbildung der Coniferen. Leipzig, Verlag Friedrich Hofmeister.

    Google Scholar 

  • Hu, C. Y. 1975. In vitro culture of rudimentary embryos of elevenIlex species. J. Amer. Soc. Hort. Sci.100: 221–225.

    Google Scholar 

  • — 1976. Light mediated inhibition in vitro development of rudimentary embryos ofIlex opaca. Amer. J. Bot.63: 651–650.

    Article  Google Scholar 

  • —,F. Rogalski andC. Ward. 1979. Factors maintainingIlex rudimentary embryos in the quiescent state and the ultrastructural changes during in vitro activation. Bot. Gaz. (London)140: 272–279.

    Article  Google Scholar 

  • Jacobsen, J. V., T. J. V. Higgins and J. A. Zwar. 1979. Hormonal control of endosperm function during germination. Pages 241–262in J. Rubinstein, R. L. Phillips, C. G. Green and B. G. Gengenbach (eds.), The plant seed: Development, preservation and germination.

  • Jenner, C. F. 1974a. Factors in the grain regulating the accumulation of starch. Bull. Roy. Soc. New Zealand12: 901–908.

    Google Scholar 

  • — 1974b. An investigation of the association between the hydrolysis of sucrose and its absorption by grains of wheat. Austr. J. Plant Physiol.1: 319–329.

    Article  CAS  Google Scholar 

  • Jensen, W. A. 1968a. Cotton embryogenesis: The zygote. Planta79: 346–366.

    Article  Google Scholar 

  • — 1968b. Cotton embryogenesis: The tube containing endoplasmatic reticulum. J. Ultrastruct. Res.22: 296–302.

    Article  PubMed  CAS  Google Scholar 

  • -. 1972. The embryo sac and fertilization in Angiosperms. Publ. Harold L. Lyon Arboretum, Univ. of Hawaii. 32 pp.

  • — 1974. Reproduction in flowering plants. Pages 481–503in A. W. Robards (ed.), Dynamic aspects of plant ultrastructure. McGraw-Hill Book Co., New York.

    Google Scholar 

  • —,P. Schulz andM. E. Ashton. 1977. An ultrastructural study of early endosperm development and synergid changes in unfertilized cotton ovules. Planta133: 179–189.

    Article  Google Scholar 

  • Jernstedt, J. A. andC. Clark. 1979. Stomata on the fruits of seeds ofEschscholzia (Papaveraceae). Amer. J. Bot.66: 586–590.

    Article  Google Scholar 

  • Johansen, D. A. 1951. Plant embryology. Chronica Botanica.

  • Johri, B. M. 1963. Female gametophyte. Pages 69–104in P. Maheshwari (ed.), Recent advances in embryology of angiosperms. Intern. Soc. Plant Morphology. Delhi.

    Google Scholar 

  • Joshi, P. C., A. M. Wadhwani, andB. M. Johri. 1967. Morphological and embryological studies onGossypium L. Proc. Nat. Inst. Sci. India, Pt. B, Biol. Sci.33: 37–93.

    Google Scholar 

  • Kapil, R. N. andS. C. Tiwani. 1978. The integumentary tapetum. Bot. Rev. (Lancaster)44: 457–490.

    Article  Google Scholar 

  • Läuchli, A. 1976. Apoplastic transport tissues. Pages 3–34in U. Lüttge and M. G. Pitman (eds.), Encyclopedia of plant physiology. 11B. Springer-Verlag, Berlin.

    Google Scholar 

  • Lichtner, F. T. andR. M. Spanswick. 1981. Sucrose uptake by developing soybean cotyledons. Pl. Physiol. (Lancaster)68: 693–698.

    Article  CAS  Google Scholar 

  • Liu, T. T. Y. andJ. C. Shannon. 1981. Movement of metabolites associated with nonaqueously isolated starch granules from immatureZea mays L. endosperm. Pl. Physiol. (Lancaster)67: 525–529.

    CAS  Google Scholar 

  • Maheshwari, P. 1950. An introduction to the embryology of Angiosperms. McGraw-Hill, New York and London.

    Google Scholar 

  • Martin, A. C. 1946. The comparative internal morphology of seeds. Amer. Midl. Naturalist36: 513–660.

    Article  Google Scholar 

  • Mogensen, H. L. 1978. Pollen tube-synergid interactions inProboscidea louisianica (Martyniaceae). Amer. J. Bot.65: 952–964.

    Article  Google Scholar 

  • — 1981a. Ultrastructural location of adenosine triphosphatase in the ovules ofSaintpaulia ionantha (Gesneriaeceae) and its relation to synergid function. Amer. J. Bot.68: 183–194.

    Article  CAS  Google Scholar 

  • — 1981b. Translocation of uranine within the living ovules of selected species. Amer. J. Bot.68: 195–199.

    Article  CAS  Google Scholar 

  • — andH. K. Suthar. 1979. Ultrastructure of the egg apparatus ofNicotiana tabacum (Solanaceae) before and after fertilization. Bot. Gaz. (London)140: 168–179.

    Article  Google Scholar 

  • Neal, O. M. andA. P. Dye. 1964. A method of studying dormancy of holly seeds that required eight years to germinate. Proc. West-Virginia Acad. Sci.36: 10.

    Google Scholar 

  • Netolitzky, F. 1926. Anatomie der Angiospermensamen.In K. Linsbauer (ed.), Handbuch der Pflanzenanatomie. Abt. 2, Teil 2, Bd. 10, Borntraeger Berlin.

    Google Scholar 

  • Raghavan, V. 1966. Nutrition, growth and morphogenesis of plant embryos. Biol. Rev. City Coll.41: 1–58.

    CAS  Google Scholar 

  • Reed, A. J., F. E. Below andR. H. Hageman. 1980. Grain protein accumulation and the relationship between leaf nitrate reductase and protease activities during grain development in maize (Zea mays L.). Pl. Physiol. (Lancaster)66: 164–170.

    CAS  Google Scholar 

  • Rubinstein, J., R. L. Phillips, C. E. Green andB. G. Gegenbach (eds.) 1979. The plant seed: Development, preservation and germination. Academic Press, Inc., New York.

    Google Scholar 

  • Rugenstein, S. R. andN. R. Lersten. 1981. Stomata on seeds and fruits ofBauhinia (Leguminosae: Caesalpiniodeae). Amer. J. Bot.68: 873–876.

    Article  Google Scholar 

  • Russel, S. D. 1979. Fine structure of megagametophyte inZea mays. Canad. J. Bot.57: 1093–1110.

    Article  Google Scholar 

  • — andD. D. Cass. 1981. Ultrastructure of the sperms ofPlumbago zeylanica. Protoplasma107: 85–107.

    Article  Google Scholar 

  • Sanger, J. M. andW. T. Jackson. 1971. Fine structure study of pollen development inHaemanthus katherinae Baker. J. Cell Sci.8: 303–315.

    PubMed  CAS  Google Scholar 

  • Schacht, H. 1857. Ueber Pflanzenbefruchtung. Jahrb. Wiss. Bot.1: 193–232.

    Google Scholar 

  • Schulz, R. andW. A. Jensen. 1968.Capsella embryogenesis: The early embryo. J. Ultrastruc. Res.22: 376–392.

    Article  CAS  Google Scholar 

  • — 1974.Capsella embryogenesis: The development of the free nuclear endosperm. Protoplasma80: 183–205.

    Article  Google Scholar 

  • — 1981. Pre-fertilization ovule development inCapsella. Ultrastructure and ultracytochemical localization of acid phosphatase in the meiocyte. Protoplasma107: 27–45.

    Article  CAS  Google Scholar 

  • Sehgal, C. B. andE. M. Gifford. 1979. Developmental and histochemical studies of the ovules ofNicotiana rustica L. Bot. Gaz. (London)140: 180–188.

    Article  Google Scholar 

  • Shatkin, A. J. 1981. Elucidating mechanisms of Eucaryotes genetic expression by studying animal viruses.In A. J. Shatkin (ed.), Initiation signals in viral gene expression. Springer-Verlag, Berlin.

    Google Scholar 

  • Souèges, R. 1937. Les lois du dévélopment. Hermann, Paris.

    Google Scholar 

  • Spanswick, R. M. 1976. Symplastic transport in tissues. Encyclop. Plant Physiol. New Ser.2B: 35–53.

    Google Scholar 

  • Stein, V. K. andJ. Janke. 1958. Untersuchungen uber Baumechanismus und submikroskopische Struktur der Palissadenschicht von Legumino-sensamenschalen. Mikroskopie (Wien)12: 357–392.

    Google Scholar 

  • Stokes, P. 1952. A physiological study of embryo development inHeracleum sphondylium L. I. Ann. Bot. (London)16: 571–576.

    Google Scholar 

  • — 1953. A physiological study of embryo development inHeracleum sphondylium L. III. Ann. Bot. (London)17: 157–175.

    CAS  Google Scholar 

  • Streeter, J. G. andD. L. Jeffers. 1979. Distribution of total nonstructural carbohydrates in soybean plants having increased reproductive load. Crop. Sci. (Madison)19: 729–734.

    Article  Google Scholar 

  • Sussex, J. M. andR. M. K. Dale. 1979. Hormonal control of storage protein synthesis inPhaseolus vulgaris. Pages 129–140in J. Rubinstein, R. L. Philipps, C. E. Green and B. G. Gengenbach (eds.), The plant seed: Development, preservation and germination. Academic Press, Inc., New York.

    Google Scholar 

  • Thorne, J. H. 1979. Assimilate redistribution from soybean pod walls during seed development. Agron. J.71: 812–816.

    Article  Google Scholar 

  • — 1980. Kinetics of14C photosynthate uptake by developing soybean fruit. Pl. Physiol. (Lancaster)65: 975–979.

    CAS  Google Scholar 

  • — 1981. Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Pl. Physiol. (Lancaster)67: 1016–1025.

    CAS  Google Scholar 

  • Tilton, V. R. 1980. Hypostase development inOrnithogalum caudatum (Liliaceae) and notes on the types of modifications in the chalaza of angiosperm ovules. Canad. J. Bot.58: 2059–2066.

    Google Scholar 

  • — 1981. Ovule development inOrnithogalum caudatum (Liliaceae) with a review of selected papers on Angiosperm reproduction, II and IV. New Phytol.88: 459–476, 505–531.

    Article  Google Scholar 

  • — andN. Lersten. 1981. Ovule development inOrnithogalum caudatum (Liliaceae) with a review of selected papers on angiosperm reproduction, I and III. New Phytol.88: 439–457, 477–504.

    Article  Google Scholar 

  • Ventakao Rao, C. 1953. Contribution to the embryology of Sterculiaceae V. J. Indian Bot. Soc.32: 203–238.

    Google Scholar 

  • Wardlaw, C. W. 1955. Embryogenesis in plants. Methuen and Co., Ltd., London and John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Welk, M. W., W. F. Millington andW. G. Rosen. 1965. Chemotropic activity and the pathway of the pollen tube. Amer. J. Bot.52: 774–780.

    Article  Google Scholar 

  • Wiebold, W. J., D. A. Ashley andH. A. Boerma. 1981. Reproductive abscission levels and patterns for eleven determinate soybean cultivars. Crop. Sci. (Madison)63: 43–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evenari, M. Seed physiology: From ovule to maturing seed. Bot. Rev 50, 143–170 (1984). https://doi.org/10.1007/BF02861091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861091

Keywords

Navigation