Skip to main content
Log in

Variations in stable carbon isotopic composition ofn-alkanes from Ordovician- and Triassic-derived oils in Lunnan oilfield, Tarim Basin, NW China: Global paleoenvironmental constraints

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Molecular stable carbon isotope technique was employed to study well-sourced crude oils collected from a single drilling well and from the entire Lunnan oilfield, Tarim Basin, NW China. The stable carbon isotopic composition ofn-alkanes from crude oils showed that Ordovician-derived oils are enriched in13C and Triassic-derived oils are depleted in13C. This is consistent with the distribution and evolution trend of stable carbon isotope ratios in crude oils/organic matter from all over the world in geological history (Stahl, 1977; Andrusevich et al., 1998). An extensive survey of literature indicates that, except for thermal maturity, organic matter input and depositional environment, paleoenvironmental background is another key factor that affects the stable carbon isotopic composition of Ordovician-and Triassic-derived crude oils. The results showed that gas chromatographic-isotope ratio mass spectrometry (GC-C-IRMS), combining with biogeochemical evolution of organic matter in geological history, may be a powerful tool in refining oil/oil, oil/source correlations in multi-age, multi-source petroliferous basins like Tarim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsaar, L., T. Meidla, and T. Martma, 1999, Evidence for a widespread carbon isotopic event associated with Late Middle Ordovician sedimentological and faunal changes in Estonia [J]: Geological Magazine, v. 136, p. 49–62.

    Article  Google Scholar 

  • Andrusevich, A. E., M. H. Engel, J. E. Zumberge, and L. A. Brothers, 1998, Secular, episodic changes in stable carbon isotopic composition of crude oils [J]: Chemical Geology, v. 152, p. 59–72.

    Article  Google Scholar 

  • Baud, A., M. Magaritz, and W. T. Holser, 1989, Permian-Triassic of the Tethys: Carbon isotope studies [J]: Geoelogische Runschau, v. 78, p. 649–677.

    Article  Google Scholar 

  • Berner, R. A., 1991, A model for atmospheric CO2 over Phanerozoic time [J]: American Journal of Science, v. 291, p. 339–376.

    Article  Google Scholar 

  • Bjorøy, M., K. Hall, P. Gillyon, and J. Jumeau, 1991, Carbon isotope variations in n-alkanes and isoprenoids in whole oils [J]: Chemical Geology, v. 93, p. 13–20.

    Article  Google Scholar 

  • Bjorøy, M., P. B. Hall, E. Hustad, and J. A. Williams, 1992, Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity [J]: Org. Geochem., v. 19, p. 89–105.

    Article  Google Scholar 

  • Bjorøy, M., K. Hall, and J. Jumeau, 1990, Stable carbon isotope ratio analysis on single components in crude oil by direct gas chromatography—Isotope analysis [J]: Trends in Analytical Chemistry, v. 9, p. 331–337.

    Article  Google Scholar 

  • Bjorøy, M., P. B. Hall, and R. P. Moe, 1994a, Variation in the isotopic composition of single components in the C4-C20 fraction of oils and condensates [J]: Org. Geochem., v. 21, p. 761–776.

    Article  Google Scholar 

  • Bjorøy, M., P. B. Hall, and R. P. Moe, 1994b, Stable carbon isotope variation of n-alkanes in Central Graben oils [J]: Org. Geochem., v. 22, p. 355–381.

    Article  Google Scholar 

  • Boreham, C. J., R. E. Summons, Z. Roksandic, L. M. Dowling, and A. C. Hutton, 1994, Chemical, molecular and isotopic differentiation of organic facies in the Tertiary lacustrine Duaringa oil shale deposit, Queensland, Australia [J]: Org. Geochem., v. 21, p. 685–712.

    Article  Google Scholar 

  • Botneva, T. A., N. A. Eremenko, and R. G. Pankina, 1984, Isotopic composition of carbon, hydrogen, nitrogen, and sulphur in crude oils, gases, and organic matter of rocks, In: Handbook on oil and gas geology [M] : Nedra, Moscow, p. 78–97 (in Russian).

    Google Scholar 

  • Bowring, S. A., D. H. Erwin, Y. G. Jin, M. W. Martin, H. Davidek, and Wang, W., 1998, U/Ph zircon geochronology and Tempo of the end-Permian mass extinction [J]: Science, v. 280, n. 15, p. 1039–1045.

    Article  Google Scholar 

  • Craig, H., 1953, The geochemistry of the stable carbon isotopes [J]: Geochim. Cosmochim. Acta, v. 3, p. 53–92.

    Article  Google Scholar 

  • Chung, H M., M. A. Rooney, M. B. Toon, and G. E. Claypool, 1992, Carbon isotopic composition of marine crude oils [J]: AAPG Bulletin, v. 76, p. 1000–1007.

    Google Scholar 

  • Clayton, C. J. and M. Bjorctøy, 1994, Effect of maturity on13C/12C ratios of individual compounds in North Sea oils [J]: Org. Geochem., v. 21, p. 737–750.

    Article  Google Scholar 

  • Collister, J. W., E. Lichtfouse, G. Hieshima, and J. M. Hayes, 1994, Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado) [J]: Org. Geochem., v. 21, p. 645–659.

    Article  Google Scholar 

  • Collister, J. W., G. Rieley, B. Stern, G. Eglinton, and B. Fry, 1994, Compound-specific delta13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]: Org. Geochem., v. 21, p. 619–627.

    Article  Google Scholar 

  • Collister, J. W., R. E. Summons, E. Lichtfouse, and J. M. Hayes, 1992, An isotopic biogeochemical study of the Green River Oil Shale [J]: Org. Geochem., v. 19, p. 265–276.

    Article  Google Scholar 

  • Collister, J. W. and D. A. Wavrek, 1996, δ13C compositions of saturate and aromatic fractions of lacustrine oils and bitumens: Evidence for water column stratification [J]: Org. Geochem., v. 24, p. 913–920.

    Article  Google Scholar 

  • Curiale, J. A. and B. W. Bromley, 1996, Migration induced compositional changes in oils and condensates of a single field [J]: Org. Geochem., v. 24, n. 12, p. 1097–1113.

    Article  Google Scholar 

  • Dean, W. E., M. A. Arthur, and G. E. Cloypool, 1986, Depletion of13C in Cretaceous marine organic matter; Source, diagenetic or environmental signal [J]: Marine Geology, v. 70, p. 119–157.

    Article  Google Scholar 

  • Derenne, S., P. Metzger, C. Largeau, P. F. Van Bergen, J. P. Gatellier, J. S. Sinninghe Damste, E. W. Tegelaar, J. W. de Leeuw, and C. Berkaloff, 1992, Similar morphological and chemical variations ofGloeocapsomorpha prisca in Ordovician sediments and culturedBotryococcus braunii as a response to changes in salinity [J]: Org. Geochem., v. 19, p. 299–313.

    Article  Google Scholar 

  • Engel, M. H., S. A. Macko, and J. A. Silfer, 1990, Carbon isotopic composition of individual amino acids in the Murchison meteorite [J]: Nature, v. 348, p. 47–49.

    Article  Google Scholar 

  • Erwin, D. H., 1993, The great Paleozoic crisis: Life and death in the Permian [M]: New York, Columbia Univ. Press, 327p.

    Google Scholar 

  • Fang, J., T. A. Abrajano, P.A. Comet, J. M. Brooks, R. Sassen, and I. R. Macdonald, 1993, Gulf of Mexico hydrocarbon seep communities XI. Carbon isotopic fractionation during fatty acid biosynthesis of seep organisms and its implication for chemosynthetic processes [J]; Chemical Geology, v. 109, p. 271–179.

    Article  Google Scholar 

  • Fature, K., M. J. de Wit, and J. P. Wilis, 1995, Late Permian global coal hiatus linked to13C-depleted CO2 flux into the atmosphere during the final consolidation of Pangea [J]; Geology, v. 23, n. 6, p. 507–510.

    Article  Google Scholar 

  • Flower, M. F., 1992, The influence ofGloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of Late Ordovician age from Canada, In M. Schidlowski, S. Golubic, M. M. Kimberley, D. D. McKirdy, and P. A. Trudinger, eds., Early organic evolution; Implication for mineral and energy resources [C]: Berlin, Springer, p. 336–356.

    Google Scholar 

  • Foster, C. B., R. Wicander, and J. D. Reed, 1989,Gloeocapsomorpha prisca Zalessky, 1917: A new study, Part I : Taxonomy, geochemistry, and paleoecology [J] : Geobios., v. 22, p. 735–759.

    Article  Google Scholar 

  • Freeman, K. H., C. Boreham, R. Summons, and J. M. Hayes, 1994, The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis [J]; Org. Geochem., v. 21, p. 1037–1049.

    Article  Google Scholar 

  • Freeman, K., J. M. Hayes, J. M. Trendel, and P. Albrecht, 1990, Evidence from carbon isotopic measurements for diverse origins of sedimentary hydrocarbons [J]: Nature, v. 343, p. 254–256.

    Article  Google Scholar 

  • Freeman, K. and S. G. Wakeham, 1992, Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments [J]: Org. Geochem., v. 19, p. 277–285.

    Article  Google Scholar 

  • Freeman, K., S. G. Wakeham, and J. M. Hayes, 1994, Predictive isotopic biogeochemistry: Hydrocarbons from anoxic marine basins [J]; Org. Geochem., v. 21, p. 629–644.

    Article  Google Scholar 

  • Gilmour, I., P. K. Swart, and C. T. Pillinger, 1984, The carbon isotopic composition of individual petroleum lipids [J]; Org. Geochem., v. 6, p. 665–670.

    Article  Google Scholar 

  • Grizzle, P. L., H. J. Coleman, R. E. Sweeney, and I. R. Kaplan, 1979, Correlation of crude oil source with nitrogen, sulfur, and carbon stable isotope ratio [R]; Am. Chem. Soc. Meeting, April, 1979, p. 39–51.

  • Goericke, R. and B. Fry, 1994, Variations of marine plankton δ13C with latitude, temperature and dissolved CO2 in the world ocean [J]: Global Biogeochemical Cycles, v. 8, p. 85–90.

    Article  Google Scholar 

  • Hatch, J. R., S. R. Jacobson, B. J. Witzke, J. B. Risatti, D. E. Anders, W. L. Watney, K. D. Newell, and A. K. Vuletich, 1987, Possible Late Middle Ordovician organic carbon isotope excursion: Evidence from Ordovician oils and hydrocarbon source rocks, Mid-Continent and east-central United States [J]: AAPG Bulletin, v. 71, p. 1342–1354.

    Article  Google Scholar 

  • Hayes, J. M., K. H. Freeman, B. N. Popp, and C. H. Hoham, 1990, Compound-specific isotopic analyses; A novel tool for reconstruction of ancient biogeochemical Processes [J]; Org. Geochem., v. 16, p. 1115–1128.

    Article  Google Scholar 

  • Hayes, J. M., 1993, Factors controlling13C contents of sedimentary organic compounds: Principles and evidence [J]: Marine Geology, v. 113, p. 111–125.

    Article  Google Scholar 

  • Hayes, J. M., R. Takagiku, R. Ocampo, H. J. Callot, and P. Albrecht, 1987, Isotopic composition and probable origins of organic molecules in the Eocene Messel Shale [J]: Nature, v. 329, p. 48–51.

    Article  Google Scholar 

  • Holser, W. T. and M. Magaritz., 1987, Events near the Permian-Triassic boundary [J]: Modern Geology, v. 11, p. 155–180.

    Google Scholar 

  • Holser, W. T., H. P. Schonlanb, M. Jr. Attrep, K. Boeckelmann, P. Klein, M. Magaritz, C. J. Orth, A. Fenninger, C. Jenny, M. Kralik, H. E. Pak Mauritsch, J. M. Schramm, K. Stattegger, and R. Schmoller, 1989, A unique geochemical record at the Permian-Triassic boundary [J]: Nature, v. 337, p. 39–44.

    Article  Google Scholar 

  • Hoffmann, C. F., C. B. Foster, T. G. Powell, and R. E. Summons, 1987, Hydrocarbon biomarkers from Ordovician sediments and the fossil algaeGloeocapsomorpha prisca Zalessky 1917 [J]: Geochim. et Cosmochim. Acta, v. 51, p. 2681–2797.

    Article  Google Scholar 

  • Huang Difan, Zhao Mengjun, and Zhang Shuichang, 1997, Genetic analysis of the origin of the lower Paleozoic waxy hydrocarbon from the manjiar oil-gas system, Tarim Basin [J]: Acta Sedimentologica Sinica, v. 15, p. 6–13 (in Chinese).

    Google Scholar 

  • Jacobson, S. R., S. C. Finney, J. R. Hatch, and G. A. Ludvigson, 1995,Gloeocapsomorpha prisca-driven organic carbon isotope excursion, Late Middle Ordovician (Rocklandian), North America mid-continent; New data from Nevada and Iowa, in J. Cooper et al., eds., Ordovician odyssey: Short papers for the Seventh International Symposium on the Ordovician System [C] : Fullerton, California, Pacific Section, Society for Sedimentary Geology (SEPM), p. 299–302.

    Google Scholar 

  • Jacobson, S. R., J. R. Hatch, S. C. Teerman, and G. A. Askin, 1988, Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils [J]: AAPG Bulletin, v. 72, p. 1090–1100.

    Google Scholar 

  • Kennicutt, M. C. and J. M. Brooks, 1990, Unusual normal alkane distribution in offshore New Zealand sediments [J]: Org. Geochem., v. 15, p. 193–197.

    Article  Google Scholar 

  • Knoll, A.N., 1991, End of Proterozoic eon. [J]: Sci. Am., v. 265, p. 64–73.

    Article  Google Scholar 

  • Laws, E. A., B. N. Popp, R. R. Bidigare, M. C. Kennicutt, and S. A. Macko, 1995, Dependence of phytoplankton carbon isotopic compositions on growth rate and CO2 (aq): Theoretical considerations and experimental results [J]: Geochim. et Cosmochim. Acta, v. 59, p. 1131–1138.

    Article  Google Scholar 

  • Liang Digang, Zhang Shuichang, Wang Feiyu et al., 1998, Study on the source rock and hydrocarbon sources in Tarim Basin [R] : Research Report, 296p. (in Chinese)

  • Ludvigson, G. A., S. R. Jacobson, B. J. Witzke, and L. A. Gonzalez, 1996, Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah formation, Upper Mississippi Valley, in B. Witzke et al., eds., Paleozoic sequence stratigraphy: Views from the North American craton [C] : Geological Society of America Special Paper 306, p. 67–86.

  • Macko, S. A., M. H. Engel, and Y. Qian, 1991, Early diagenesis and organic matter preservation—A molecular stable carbon isotope perspectives [J]: Chemical Geology, v. 114, p. 365–379.

    Article  Google Scholar 

  • Magaritz, M., R. Bar, A. Baud, and W. T. Holser, 1988, The carbon-isotope shift at the Permian-Triassic boundary in the southern Alps is gradual [J]: Nature, v. 331, p. 337–339.

    Article  Google Scholar 

  • Monson, K. D. and J. M. Hayes, 1982, Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes [J]: Geochim. et Cosmochim. Acta, v. 46, p. 139–149.

    Article  Google Scholar 

  • O’Malley, V. P., T. A. J. Abrajano, and J. Hellou, 1994, Determination of the13C/12C ratios of individual PAH from environmental samples; Can PAH sources be apportioned [J]: Org. Geochem., v. 21, p. 809–822.

    Article  Google Scholar 

  • Pancost, R. D., K. H. Freeman, M. E. Patzkowsky, D. A. Wavrek, and J. W. Collister, 1998, Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, U. S. A. [J]: Org. Geochem., v. 29, p. 1649–1662.

    Article  Google Scholar 

  • Pancost, R. D., K. H. Freeman, and M. E. Patzkowsky, 1999, Organic-matter source variation and the expression of a late Middle Ordovician carbon isotope excursion [J]: Geology, v. 27, p. 1015–1018.

    Article  Google Scholar 

  • Pancost, R. D., N. Telnas, and J. S. Sinninghe Damste, 2001, Carbon isotopic composition of an isoprenoids-rich oil and its potential source rock [J]: Org. Geochem., v. 32, p. 87–103.

    Article  Google Scholar 

  • Patzkowsky, M. E., L. M. Slupik, M. A. Arthur, R. D. Pancost, and K. H. Freeman, 1997, Late Middle Ordovician environmental change and extinction: Harbinger of the Late Ordovician or continuation of Cambrian patterns. [J] : Geology, v. 25, p. 911–914.

    Article  Google Scholar 

  • Popp, B. N., E. A. Laws, R. R. Biigare, J. E. Dore, K. L. Hanson, and S. G. Wakeham, 1998, Effect of phytoplankton cell geometry on carbon isotope fractionation [J]: Geochim. et Cosmochim. Acta, v. 62, p. 29–77.

    Google Scholar 

  • Popp, B. N., F. J. Sansone, I. M. Rust, and D. A. Merritt, 1995, Determination of concentration and carbon isotopic composition of dissolved methane in sediments and nearshore waters [J]: Analytical Chemistry, v. 67, p. 405–411.

    Article  Google Scholar 

  • Raup, D.M. and J. J. Jr. Sepkoski, 1982, Mass extinction in the marine fossil record [J]: Science, v. 215, p. 1501–1503.

    Article  Google Scholar 

  • Raup, D. M., 1979, Size of the Permian-Triassic bottleneck and its evolutionary implications [J]: Science, v. 206, p. 216–218.

    Article  Google Scholar 

  • Reed, J. D., H. A. Illich, and B. Horsfield, 1986, Biochemical evolutionary significance of Ordovician oils and their sources [J]: Org. Geochem., v. 10, p. 347–358.

    Article  Google Scholar 

  • Rieley, G., R. J. Collier, D. M. Jones, G. Eglinton, P. A. Eakin, and A. E. Fallick, 1991, Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds [J]: Nature, v. 352, p. 425–427.

    Article  Google Scholar 

  • Rooney, M. A., A. K. Vuletich, and C. E. Griffith, 1998, Compound-specific isotope analysis as a tool for characterizing mixed oils; An example from the west of Shetlands area [J]: Org. Geochem., v. 29, p. 241–254.

    Article  Google Scholar 

  • Ruble, T. E., A. J. Bakel, and R. P. Philp, 1994, Compound specific isotopic variability in Uinta Basin native bitumens; Paleoenvironmental implications [J]: Org. Geochem., v. 21, p. 661–672.

    Article  Google Scholar 

  • Sakata, S., J. M. Hayes, A. R. McTaggart, R. A. Evans, K.J. Leckrone, and R. K. Togasaki, 1997, Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: Relevance for interpretation of biomarker records [J]: Geochimica et Cosmochimica Acta, v. 61, p. 5379–5389.

    Article  Google Scholar 

  • Schoell, M., R. J. Hwang, R. M. K. Carlson, and J. E. Welton, 1994, Carbon isotopic composition of individual biomarkers in gilsonites (Utah) [J]: Org. Geochem., v. 21, p. 673–684.

    Article  Google Scholar 

  • Schoell, M., M. A. McCaffrey, J. F. Fago, and J. M. Moldawan, 1992, Carbon isotopic composition of 28, 30-bisnorphopane and other biological markers in a Monterey crude oil [J]: Geochim. et Cosmochim. Acta, v. 56, p. 1391–1399.

    Article  Google Scholar 

  • Schoell, M., S. Schouten, J. S. Sinninghe Damste, de J. W. Leeuw, and R. E. Summons, 1994, A molecular organic carbon isotope record of Miocene climate changes [J]: Science, v. 263, p. 1122–1125.

    Article  Google Scholar 

  • Schoell, M., B. R. T. Simoneit, and T. G. Wang, 1994, Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, South China—4: Biomarker sources inferred from stable carbon isotope compositions of individual compounds [J]: Org. Geochem., v. 21, p. 713–720.

    Article  Google Scholar 

  • Silverman, S. R., 1964, Investigation of petroleum origin and evolution mechanisms by carbon isotope studies, in H. Craig, S. L. Miller, and G. L. Wasserburg, eds., Isotope and cosmic chemistry [C]: Amsterdam, North Holland, p. 92–102.

    Google Scholar 

  • Silverman, S. R. and S. Epstein, 1958, Carbon isotopic compositions of petroleums and other sedimentary organic materials [J]: AAPG Bulletin, v. 42, p. 998–1012.

    Google Scholar 

  • Stahl, W. J., 1977, Carbon and nitrogen isotopes in hydrocarbon research and exploration [J]: Chemical Geology, v. 20, p. 121–149.

    Article  Google Scholar 

  • Summons, R. E., L. L. Jane, and Z. Roksandic, 1994, Carbon isotopic fractionation in lipids from metamorphic bacteria: Relevance for interpretation of the geochemical record of biomarkers [J]: Geochim. et Cosmochim. Acta, v. 58, p. 2853–2863.

    Article  Google Scholar 

  • Wakeham, S. G., K. H. Freeman, T. Pease, and J. M. Hayes, 1993, A photoautrophic source for lycopane in marine water columns [J]: Geochim. et Cosmochim. Acta, v. 57, p. 159–165.

    Article  Google Scholar 

  • Wang, K., H. H. J. Geldsetzer, and H. R. Krouse, 1994, Permian-Triassic extinction: Organic δ13C evidence from British Columbia, Canada [J]: Geology, v. 22, p. 580–584.

    Article  Google Scholar 

  • Worsley, T. R., T. I. Moore, C. M. Fraticelli, and C. R. Scotese, 1994, Phanerozoic CO2 levels and global temperatures inferred from changing paleogeography, in G. D. Klein, ed., Pangea: Paleoclimate, tectonics and sedimentation during accretion, zenith, and breakup of a supercontinent [C] : Geological Society of America Special Paper 288, p. 57–73.

  • Zhang, S., A.D. Hanson, J. M. Moldowan, S. A. Graham, D. G. Liang, E. Chang, and F. Fago, 2000, Paleozoic oil-source rock correlations in the Tarim Basin, NW China [J]: Org. Geochem., v. 31, p. 273–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX1-SW-18) and the State 973 Project (Grant No. G1999043308).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, L., Yongge, S. & Ping’an, P. Variations in stable carbon isotopic composition ofn-alkanes from Ordovician- and Triassic-derived oils in Lunnan oilfield, Tarim Basin, NW China: Global paleoenvironmental constraints. Chin. J. Geochem. 23, 207–219 (2004). https://doi.org/10.1007/BF02842069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842069

Key words

Navigation