Skip to main content
Log in

The justification for providing dietary guidance for the nutritional intake of boron

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Because a biochemical function has not been defined for boron (B), its nutritional essentiality has not been firmly established. Nonetheless, dietary guidance should be formulated for B, because it has demonstrated beneficial, if not essential, effects in both animals and humans. Intakes of B commonly found with diets abundant in fruits, vegetables, legumes, pulses, and nuts have effects construed to be beneficial in macromineral, energy, nitrogen, and reactive oxygen metabolism, in addition to enhancing the response to estrogen therapy and improving psychomotor skills and cognitive processes of attention and memory. Perhaps the best-documented beneficial effect of B is on calcium (Ca) metabolism or utilization, and thus, bone calcification and maintenance. The paradigm emerging for the provision of dietary guidance that includes consideration of the total health effects of a nutrient, not just the prevention of a deficiency disease, has resulted in dietary guidance for chromium (Cr) and fluoride; both of these elements have beneficial effects in humans, but neither has a defined biochemical function. Knowledge of B nutritional effects in humans equals or is superior to that of Cr and fluoride; thus, establishing a dietary reference intake for B is justified. An analysis of both human and animal data suggests that an acceptable safe range of population mean intakes of B for adults could well be 1–13 mg/d. Recent findings indicate that a significant number of people do not consistently consume more than 1 mg B/d; this suggests that B could be a practical nutritional or clinical concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. A. Schroeder, J. J. Balassa, and I. H. Tipton, Abnormal trace metals in man—nickel,J. Chron. Dis. 15, 51–65 (1961).

    Article  Google Scholar 

  2. G. C. Cotzias, Importance of trace substances in environmental health as exemplified by manganese,Trace Sub. Environ. Health 1, 5–19 (1967).

    Google Scholar 

  3. E. J. Underwood, Introduction, inTrace Elements in Human and Animal Nutrition, 3rd ed., E. J. Underwood, ed., Academic, New York, pp. 1–13 (1971).

    Google Scholar 

  4. W. Mertz, Some aspects of nutritional trace element research,Fed. Proc. 29, 1482–1488 (1970).

    PubMed  CAS  Google Scholar 

  5. F. H. Nielsen, Essentiality and function of nickel, inTrace Element Metabolism in Animals-2, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds., University Park Press, Baltimore, MD, pp. 381–395 (1974).

    Google Scholar 

  6. F. H. Nielsen, How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential?J. Nutr. 126, 2377S-2385S (1996).

    PubMed  CAS  Google Scholar 

  7. Food and Nutrition Board,Recommended Dietary Allowances, 10th ed., National Academy Press, Washington, DC (1989).

    Google Scholar 

  8. K. R. Phipps, Fluoride, inPresent Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, Jr., eds., ILSI Press, Washington, DC, pp. 329–333 (1996).

    Google Scholar 

  9. Food and Nutrition Board,Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, National Academy Press, Washington, DC (1997).

    Google Scholar 

  10. R. A. Anderson, Recent advances in the clinical and biochemical effects of chromium deficiency, inEssential and Toxic Trace Elements in Human Health and Disease: An Update, A. S. Prasad, ed., Wiley-Liss, New York, pp. 221–234 (1993).

    Google Scholar 

  11. W. Mertz, Chromium in human nutrition: A review,J. Nutr. 123, 626–635 (1993).

    PubMed  CAS  Google Scholar 

  12. R. A. Anderson, N. Cheng, N. A. Bryden, M. M. Polansky, N. Cheng, J. Chi, et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes,Diabetes 46, 1786–1791 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. W. Mertz, Essential trace metals: new definitions based on new paradigms,Nutr. Rev. 51, 287–295 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. M. Jägerstad, Calcium in nutrition, inThe Role of Calcium in Biological Systems, Vol. III, L. J. Anghileri and A. M. Tuffet-Anghileri, eds., CRC, Boca Raton, FL, pp. 45–54 (1982).

    Google Scholar 

  15. L. C. Clark, G. F Combs, B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin,JAMA 276, 1957–1963 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. F. H. Nielsen, Boron in human and animal nutrition,Plant and Soil 193, 199–208 (1997).

    Article  CAS  Google Scholar 

  17. J. G. Penland, Dietary boron, brain function, and cognitive performance,Environ. Health Perspectives 102 (Suppl. 7), 65–72 (1994).

    CAS  Google Scholar 

  18. C. D. Hunt, The biochemical effects of physiologic amounts of dietary boron in animal nutrition models,Environ. Health Perspectives 102 (Suppl. 7), 35–43 (1994).

    CAS  Google Scholar 

  19. C. D. Hunt and F. H. Nielsen, Interaction between boron and cholecalciferal in the chick, inTrace Element Metabolism in Man and Animals (TEMA-4), J. McC. Howell, J. M. Gawthorne, and C. L. White, eds., Australian Academy of Science, Canberra, Australia, pp. 597–600 (1981).

    Chapter  Google Scholar 

  20. C. D. Hunt, Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick,Biol. Trace Element Res. 22, 201–220 (1989).

    Article  CAS  Google Scholar 

  21. C. D. Hunt, J. L. Herbel, and J. P. Idso, Dietary boron modifies the effects of vitamin D3 nutrition on indices of energy substrate utilization and mineral metabolism in the chick,J. Bone Miner. Res. 9, 171–182 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. N. King, T. W. Odom, H. W. Sampson, and A. G. Yersin, The effect ofin vivo boron supplementation on bone mineralization of the vitamin D—deficient chicken embryo,Biol. Trace Element Res. 31, 223–233 (1991).

    Article  CAS  Google Scholar 

  23. M. Hegsted, M. J. Keenan, F. Siver, and P. Wozniak, Effect of boron on vitamin D deficient rats,Biol. Trace Element Res. 26, 243–255 (1991).

    Article  Google Scholar 

  24. Y. Bai and C. D. Hunt, Dietary boron enhances efficacy of cholecalciferol in broiler chicks,J. Trace Element Exp. Med. 9, 117–132 (1996).

    Article  CAS  Google Scholar 

  25. N. A. Bakken, Dietary boron modifies the effect of vitamin D nutriture on energy metabolism and bone morphology in the chicks, MS thesis, University of North Dakota (1995).

  26. F. H. Nielsen, L. M. Mullen, and S. K. Gallagher, Effect of boron depletion and repletion on blood indicators of calcium status in humans fed a magnesium-low diet,J. Trace Element Exp. Med. 3, 45–54 (1990).

    CAS  Google Scholar 

  27. F. H. Nielsen, S. K. Gallagher, L. K. Johnson, and E. J. Nielsen, Boron enhances and mimics some effects of estrogen therapy in postmenopausal women,J. Trace Element Exp. Med. 5, 237–246 (1992).

    CAS  Google Scholar 

  28. R. D. Tiegs, J. J. Body, H. W. Warmer, J. Barta, B. L. Riggs, and H. Health III, Calcitonin secretion in postmenopausal osteoporosis,N. Engl. J. Med 312, 1097–1100 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. P. K. Johnston, I. F. Hunt, N. Murphy, D. J. Baylink, and R. A. Clemens, Osteocalcin (OC), bone mineral content (BMC) and calcium intake in postmenopausal women,Fed. Proc. 46, 902 (1987).

    Google Scholar 

  30. C. D. Hunt, J. L. Herbei, and F. H. Nielsen, Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations,Am. J. Clin. Nutr. 65, 803–813 (1997).

    PubMed  CAS  Google Scholar 

  31. F. H. Nielsen, Dietary supplementation of physiological amounts of boron increases plasma and urinary boron of perimenopausal women,Proc. North Dakota Acad. Sci. 50, 52 (1996).

    Google Scholar 

  32. K. Warington, The effect of boric acid and borax on the broad bean and certain other plants,Ann. Bot. 37, 629–672 (1923).

    Google Scholar 

  33. A. L. Sommer and C. B. Lipman, Evidence on the indispensable nature of zinc and boron for higher green plants,Plant Physiol. 1, 231–249 (1926).

    Article  PubMed  CAS  Google Scholar 

  34. W. D. Loomis and R. W. Durst, Chemistry and biology of boron,Biofactors 3, 229–239 (1992).

    PubMed  CAS  Google Scholar 

  35. T. Matoh, Boron in plant cell walls,Plant and Soil 193, 59–70 (1997).

    Article  CAS  Google Scholar 

  36. D. G. Blevins and K. M. Lukaszewski, Proposed physiologic functions of boron in plants pertinent to animal and human metabolism,Environ. Health Perspectives 102 (Suppl. 7), 31–33 (1994).

    CAS  Google Scholar 

  37. I. Cakmak and V. Römheld, Boron deficiency-induced impairments of cellular function in plants,Plant and Soil 193, 71–83 (1997).

    Article  CAS  Google Scholar 

  38. F. H. Nielsen, Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation,FASEB J. 5, 2661–2667 (1991).

    PubMed  CAS  Google Scholar 

  39. WHO/FAO/IAEA,Trace Elements in Human Nutrition and Health, World Health Organization, Geneva, pp. 175–179 (1996).

    Google Scholar 

  40. C. J. Rainey, R. E. Christensen, L. A. Nyquist, P. L. Strong, and J. R. Coughlin, Boron daily intake from the American diet,FASEB J. 10, A785 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, F.H. The justification for providing dietary guidance for the nutritional intake of boron. Biol Trace Elem Res 66, 319–330 (1998). https://doi.org/10.1007/BF02783145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783145

Index entries

Navigation