Skip to main content
Log in

Time-gated microscopic energy transfer measurements for probing mitochondrial metabolism

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Spectroscopic and microscopic methods for probing mitochondrial malfunction were established using cultivated endothelial cells from the calf aorta and various inhibitors of the respiratory chain, which is located at the inner mitochondrial membrane. Time-gated fluorescence spectroscopy was used to measure autofluorescence of the coenzyme NADH as well as “energy transfer efficacy” from excited NADH molecules (energy donor) to the mitochondrial marker rhodamine-123 (energy acceptor). Autofluorescence usually exhibited a weak increase after specific inhibition of enzyme complexes of the respiratory chain. In contrast, a pronounced increase in energy transfer efficacy was observed after inhibition of the same enzyme complexes. The detection of donor (NADH) and acceptor (R123) fluorescence in different nanosecond time gates following the exciting laser pulses enhances selectivity and improves quantification of energy transfer measurements. Therefore, timegated energy transfer spectroscopy is suggested to be an appropriate tool for probing mitochondrial malfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. DiMauro, E. Bonilla, M. Zeviani, M. Nakagawa, and D. C. DeVivo (1985)Ann. Neurol. 17, 521–526.

    Article  PubMed  CAS  Google Scholar 

  2. R. A. Capaldi (1988)TTIBS 13, 144–148.

    CAS  Google Scholar 

  3. D. C. Wallace (1992)Annu. Rev. Biochem. 61, 1175–1212.

    Article  PubMed  CAS  Google Scholar 

  4. R. Luft (1994)Proc. Natl. Acad. Sci. USA 91, 8731–8738.

    Article  PubMed  CAS  Google Scholar 

  5. M. J. Jackson, J. A. Schaefer, M. A. Johnson, A. A. M. Morris, D. M. Turnbull, and L. A. Bindoff (1995)Brain 118, 339–357.

    Article  PubMed  Google Scholar 

  6. A. H. V. Schapira (1994)Move. Disord. 9, 125–138.

    Article  CAS  Google Scholar 

  7. W. D. Parker, N. J. Mahr, C. M. Filley, J. K. Parks, D. Hughes, D. A. Young, and C. M. Cullum (1994)Neurology 44, 1086–1090.

    PubMed  Google Scholar 

  8. M. Hasitz, Z. Rácz, A. Nagy, and A. Lipcsey (1995)Arch. Gerontol. Geriatr. 21, 53–61.

    Article  PubMed  CAS  Google Scholar 

  9. M. W. J. Cleeter, J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. V. Schapira (1994)FEBS Lett. 345, 50–54.

    Article  PubMed  CAS  Google Scholar 

  10. T. Galeotti, G. D. V. VanRossum, D. H. Mayer, and B. Chance (1970)Eur. J. Biochem. 17, 485–496.

    Article  PubMed  CAS  Google Scholar 

  11. J.-M. Salmon, E. Kohen, P. Viallet, J. G. Hirschberg, A. W. Wouters, C. Kohen, and B. Thorell (1982)Photochem. Photobiol. 36, 585–593.

    PubMed  CAS  Google Scholar 

  12. P. Galland and H. Senger (1988)J. Photochem. Photobiol. B Biol. 1, 277–294.

    Article  CAS  Google Scholar 

  13. M. Nokubo, I. Zs-Nagy, K. Kitani, and M. Ohta (1988)Biochim. Biophys. Acta 939, 441–448.

    Article  PubMed  CAS  Google Scholar 

  14. B. Chance, P. Cohen, F. F. Jöbsis, and B. Schoener (1962)Science 137, 499–502.

    Article  PubMed  CAS  Google Scholar 

  15. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York, London.

    Google Scholar 

  16. T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber (1970)J. Am. Chem. Soc. 92, 687–695.

    Article  CAS  Google Scholar 

  17. P. L. Luisi, A. Baici, F. J. Bonner, and A. Aboderin (1975)Biochemistry 14, 362–368.

    Article  PubMed  CAS  Google Scholar 

  18. H. Schneckenburger and K. König (1992)Opt. Eng. 31, 1447–1451.

    Article  CAS  Google Scholar 

  19. R.-J. Paul and H. Schneckenburger (1996)Naturwissenschaften 83, 32–35.

    Article  PubMed  CAS  Google Scholar 

  20. L. V. Johnson, M. L. Walsh, and L. B. Chen (1980)Proc. Natl. Acad. Sci. USA 77, 990–994.

    Article  PubMed  CAS  Google Scholar 

  21. T. Horikoshi, T. Yoshioka, Y. Kubota, and K. Yanagisawa (1987)Cell Struct. Funct. 12, 525–537.

    Article  PubMed  CAS  Google Scholar 

  22. H. Schneckenburger, M. H. Gschwend, W. S. L. Strauss, R. Sailer, M. Kron, U. Steeb, and R. Steiner, submitted for publication.

  23. W. Halle, W.-E. Siems, K. D. Jentzsch, E. Teuscher, and E. Görres (1984)Die Pharmazie 39, 77–81.

    PubMed  CAS  Google Scholar 

  24. J. Högel, J. Schmid, and W. Gaus (1994)Biom. J. 36, 411–427.

    Article  Google Scholar 

  25. H. Schneckenburger, W. Strauss, A. Rück, H. K. Seidlitz, and J. M. Wessels (1992)Opt. Eng. 31, 995–999.

    Article  CAS  Google Scholar 

  26. H. Schneckenburger, K. König, T. Dienersberger, and R. Hahn (1994)Opt. Eng. 33, 2600–2606.

    Article  Google Scholar 

  27. T. Förster (1960)Z. Elektrochem. 64, 157–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneckenburger, H., Gschwend, M.H., Strauss, W.S.L. et al. Time-gated microscopic energy transfer measurements for probing mitochondrial metabolism. J Fluoresc 7, 3–10 (1997). https://doi.org/10.1007/BF02764571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764571

Key Words

Navigation