Skip to main content
Log in

Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This paper reports on the Sub-keV Atom Reflecting Analyzer (SARA) experiment that will be flown on the first Indian lunar mission Chandrayaan-1. The SARA is a low energy neutral atom (LENA) imaging mass spectrometer, which will perform remote sensing of the lunar surface via detection of neutral atoms in the energy range from 10 eV to 3 keV from a 100km polar orbit. In this report we present the basic design of the SARA experiment and discuss various scientific issues that will be addressed. The SARA instrument consists of three major subsystems: a LENA sensor (CENA), a solar wind monitor (SWIM), and a digital processing unit (DPU). SARA will be used to image the solar wind-surface interaction to study primarily the surface composition and surface magnetic anomalies and associated mini-magnetospheres. Studies of lunar exosphere sources and space weathering on the Moon will also be attempted. SARA is the first LENA imaging mass spectrometer of its kind to be flown on a space mission. A replica of SARA is planned to fly to Mercury onboard the BepiColombo mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adimurthy V and Ramanan R V 2004 Launch strategy for Indian lunar mission; presented at “International Conference on Exploration and Utilization of the Moon (ICEUM-6)”, Nov. 22–26, 2004, Udaipur, India, abstract p. 55.

  • Barabash S, Lundin R, Andersson H, Gimholt J, Holström M, Norberg O, Yamauchi M, Asamura K, Coates A J, Linder D R, Kataria D O, Curtis C C, Hsieh K C, Sandel B R, Fedorov A, Grigoriev A, Budnik E, Grande M, Carter M, Reading D H, Koskinen H, Kallio E, Riihela P, SÄles T, Kozyra J, Krupp N, Livi S, Woch J, Luhmann J, McKenna-Lawlor S, Orsini S, Cerrulli-Irelli R, Mura A, Milillo A, Roelof E, Williams D, Sauvaud J-A, Thocaven J-J, Winningham D, Frahm R, Scherer J, Sharber J, Wurz P and Bochsler P 2004 ASPERA-3: Analyzer of space plasmas and ener- getic atoms for Mars Express,ESA Special publication ESA-SP-1240, 121–139.

  • Behrisch R and Wittmaack K 1991 Introduction; In:Sput- tering by Particle Bombardment III; (eds) R Behrisch and K Wittmaack (New York: Springer-Verlag) pp. 1–13.

    Google Scholar 

  • Betz G and Wehner G 1983 Sputtering of multicomponent materials; In:Sputtering by Particle Bombardment II; (ed.) R Behrisch (New York: Springer-Verlag) pp. 11–90.

    Google Scholar 

  • Bhandari N 2004 Scientific Challenges of Chandrayaan-1: The Indian Lunar Polar Orbiter Mission;Curr. Sci. 86 1489–1498.

    Google Scholar 

  • Bhardwaj A and Gladstone G R 2000 Auroral emissions of the giant planets;Rev. Geophys. 38 295–353.

    Article  Google Scholar 

  • Brandt P C, Barabash S, Roelof E C and Chase C J 2001 Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: Observations at low (10keV) energies;J. Geophys. Res. 106(A11) 24,663–24,674.

    Google Scholar 

  • Bussey D B J, Lucey P G, Steutel D, Robinson M S, Spudis P D and Edwards K D2003 Permanent shadow in simple craters near the lunar poles;Geophys. Res. Lett. 30(6) 1278, doi:10.1029/2002GL016180.

    Article  Google Scholar 

  • Collier M R, Moore T E, Ogilvie K W, Chornay D, Keller J W, Boardsen S, Burch J, El Marji B, Fok M-C, Fuselier S A, Ghielmetti A G, Giles B L, Hamilton D C, Peko B L, Quinn J M, Roelof E C, Stephen T M, Wilson G R, Wurz P 2001 Observations of neutral atoms from the solar wind;J. Geophys. Res. 106 24,893–24,906.

    Google Scholar 

  • Collier M R, Moore T E, Simpson D, Roberts A, Szabo A, Fuselier S, Wurz P, Lee M A, Tsurutani B T 2003 An unexplained 10–40‡ shift in the location of some diverse neutral atom data at 1 AU;Adv. Space Res. 34(1) 166–171.

    Article  Google Scholar 

  • Crider D H and Vondrak R R 2003 Space weathering effects on lunar cold trap deposits;J. Geophys. Res. 108(E7) 5079, doi:10.1029/2002JE002030.

    Article  Google Scholar 

  • Eichorn G 1978 Heating and vaporization during hyper- velocity particle impact;Planet. Space Sci. 26 463–467.

    Article  Google Scholar 

  • Elphic R C, Funsten III H O, Barraclough B L, McComas D J, Paffett M T, Vaniman D T and Heiken G 1991 Lunar surface composition and solar wind-induced secondary ion mass spectrometry;Geophys. Res. Lett. 18(11) 2165–2168.

    Google Scholar 

  • Feldman W C, Maurice S, Lawrence D J, Little R C, Lawson S L, Gasnault O, Wiens R C, Barraclough B L, Elphic R C, Prettyman T H, Steinberg J T and Binder A B 2001 Evidence for water ice near the lunar poles;J. Geophys. Res. 106 23,231–23,252.

    Google Scholar 

  • Futaana Y, Machida S, Saito Y, Matsuoka A and Hayakawa H 2003 Moon-related nonthermal ions observed by Nozomi: Species, sources, and genera- tion mechanisms;J. Geophys. Res. 108(A1) 1025, doi:10.1029/2002JA009366.

    Article  Google Scholar 

  • Futaana Y, Barabash S, Holmström M and Bhardwaj A 2005 Low energy neutral atoms imaging of the Moon;Planet Space Sci. (in press).

  • Goswami J N 2005Chandrayaan-1: Technological and Sci- entific Challenges, presented at IAA Asia-Pacific regional conference on “Advances in Planetary Exploration”, June 26–29, 2005, Bangalore, India.

  • Halekas J S, Mitchell D L, Lin R P, Frey S, Hood L, Acuña M and Binder A B 2001 Mapping of lunar crustal magnetic fields using Lunar Prospector electron reflectometer data;J. Geophys. Res. 106 27,841–27,852.

    Article  Google Scholar 

  • Hapke G 2001 Space weathering from Mercury to the aster- oid belt;J. Geophys. Res. 106 10,039–10,073.

    Article  Google Scholar 

  • Harnett E M and Winglee R M 2000 Two-dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the moon;J. Geophys. Res. 105 24,997–25,007.

    Article  Google Scholar 

  • Harnett E M and Winglee R M 2002 2.5-D particle and MHD simulations of mini-magnetospheres at the Moon;J. Geophys. Res. 107(A12) 1421, doi:10.1029/ 2002JA009241.

    Article  Google Scholar 

  • Harnett E M and Winglee R M 2003 2.5-D fluid simulations of the solar wind interacting with multiple dipoles on the surface of the Moon;J. Geophys. Res. 108(A2) 1088, doi:10.1029/2002JA009617.

    Article  Google Scholar 

  • Henderson M G, Reeves G D, Spence H E, Sheldon R B, Jorgensen A M, Blake J B and Fennell J F 1997 First energetic neutral atom images from Polar;Geophys. Res. Lett. 24 1167–1170.

    Article  Google Scholar 

  • Hood L L, Coleman P J Jr and Wilhelms D E 1979 The Moon: Sources of the crustal magnetic anomalies;Science 204 53–57.

    Article  Google Scholar 

  • Hood L L, Zakharian A, Halekas J, Mitchell D L, Lin R P, Acuña M H and Binder A B 2001 Initial mapping and interpretation of lunar crustal magnetic fields using Lunar Prospector magnetometer data;J. Geophys. Res. 106 27,825–27,839.

    Google Scholar 

  • Hovestadt D, Hilchenbach M, Bürgi A, Klecker B, Laeverenz P, Scholer M, Grünwaldt H, Axford W I, Livi S, Marsch E, Wilken B, Winterhoff H P, Ipavich F M, Bedini P, Coplan M A, Galvin A B, Gloeckler G, Bochsler P, Balsiger H, Fischer J, Geiss J, Kallenbach R, Wurz P, Reiche K-U, Gliem F, Judge D J, Ogawa H S, Hsieh K C, Möbius E, Lee M A, Managadze G G, Verigin M I and Neugebauer M 1995 CELIAS Charge, Element and Isotope Analysis System for SOHO;Solar Physics 162 441–481.

    Article  Google Scholar 

  • Johnson R E 1990 Energetic Charged-Particle Interactions with Atmospheres and Surfaces; (New York: Springer- Verlag).

    Google Scholar 

  • Johnson R E, Leblanc F, Yakshinskiy B V and Madey T E 2002 Energy distributions for desorption of sodium and potassium from ice: The Na/K ratio at Europa;Icarus 156 136–142.

    Article  Google Scholar 

  • Kazama Y, Barabash S, Bhardwaj A, Asamura K, Futaana Y, Holmström M, Lundin R, Sridharan R and Wurz P 2005 Energetic neutral atom imag- ing mass spectroscopy of the Moon and Mer- cury environments;Adv. Space Res., in press, doi:10.1016/j.asr.2005.05.047.

  • Killen R M and Ip W-H 1999 The surface-bounded atmospheres of Mercury and the Moon;Rev. Geophys. 37 361–406.

    Article  Google Scholar 

  • Kuncic Z and Cairns I H 2004 Radio emission from mini- magnetospheres on the Moon;Geophys. Res. Lett. 31, L11809, doi:10.1029/2004GL020008.

    Article  Google Scholar 

  • Lin R P, Mitchell D L, Curtis D W, Anderson K A, Carlson C W, Mc-Fadden J, Acuña M H, Hood L L and Binder A 1998 Lunar surface magnetic fields and their interaction with the solar wind: Results from Lunar Prospector;Science 281 1480–1484.

    Article  Google Scholar 

  • Mauk B H, Mitchell D H, Krimigis S M, Roelof E C and Paranicas C P 2003 Energetic neutral atoms from a trans-Europa gas torus at Jupiter;Nature 421 920–922.

    Article  Google Scholar 

  • Moore T E, Chornay D J, Collier M R, Herrero F A, Johnson J, Johnson M A, Keller J W, Laudadio J F, Lobell J F, Ogilvie K W, Rozmarynowski P, Fuselier S A, Ghielmetti A G, Hertzberg E, Hamilton D C, Lundgren R, Wilson P, Walpole P, Stephen T M, Peko B L, Van Zyl B, Wurz P, Quinn J M and Wilson G R 2000 The low energy neutral atom imager for IMAGE;Space Sci. Rev. 91(1–2) 155–195.

    Article  Google Scholar 

  • Potter A E and Morgan T H 1994 Variation of Lunar Sodium Emission Intensity with phase angle;Geophys. Res. Lett. 21 2263–2266.

    Article  Google Scholar 

  • Richmond N C, Hood L L, Halekas J S, Mitchell D L, Lin R P, Acuña M and Binder A B 2003 Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains;Geophys. Res. Lett. 30(7) 1395, doi:10.1029/2003GL016938.

    Article  Google Scholar 

  • Richmond N C, Hood L L, Mitchell D L, Lin R P, Acuña M and Binder A B 2005 Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins;J. Geophys. Res. 110 E05011, doi:10.1029/2005JE002405.

    Article  Google Scholar 

  • Samir U, Write K H Jr and Stone N H 1983 The expansion of plasma into a vacuum: basic phenomena and processes and applications to space plasma physics;Rev. Geophys. and Space Phys. 21 1631–1646.

    Google Scholar 

  • Sigmund P 1969 Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets;Phys. Rev. 184 383–416.

    Article  Google Scholar 

  • Stern S A1999 The lunar atmosphere: History, status, current problems, and context;Rev. Geophys. 37(4) 453–491.

    Article  Google Scholar 

  • Thyagarajan K and Annadurai M 2004Chandrayaan-1: Spacecraft design and technical challenges; paper pre- sented at “International conference on Exploration and Utilization of the Moon (ICEUM-6)”, Nov. 22–26, 2004, Udaipur, India, abstract p. 54.

  • Vasavada A R, Paige D A and Wood S E 1999 Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits;Icarus 141 179–193.

    Article  Google Scholar 

  • Witte M, Rosenbauer H, Banaszkiewicz M and Fahr H 1993 The ULYSSES neutral gas experiment: Determination of the velocity and temperature of the interstellar neutral helium;Adv. Space Res. 13(6) 121–130.

    Article  Google Scholar 

  • Witte M 2004 Kinetic parameters of interstellar neutral helium;Astron. Astrophys. 426 835–844.

    Article  Google Scholar 

  • Wurz P and Lammer H 2003 Monte-Carlo simulations of Mercury’s exosphere;Icarus 164(1) 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, A., Barabash, S., Futaana, Y. et al. Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission. J Earth Syst Sci 114, 749–760 (2005). https://doi.org/10.1007/BF02715960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715960

Keywords

Navigation