Skip to main content
Log in

Insights on zinc regulation of food intake and macronutrient selection

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential trace element required for human beings and animals. This divalent cation is involved in many physiological functions, including immune and antioxidant function, growth, and reproduction. Deficiency of Zn produces several pathological disorders and abnormalities in its metabolism, such as anorexia, weight loss, poor efficiency, and growth retardation. Although it has been known for more than 50 yr that Zn deficiency regularly and consistently causes anorexia in many animal species, the mechanism that causes this phenomenon still remains an enigma. The present review describes recent research investigating the relationship between Zn deficiency and the regulation of food intake, as well as macronutrient selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. A. Hendy, M. I. Yousef, and N. I. Naga, Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats, Toxicology 167, 163–170 (2001).

    Article  PubMed  Google Scholar 

  2. I. E. Dreosti, zinc and the gene, Mutat. Res. 475, 161–167 (2001).

    PubMed  CAS  Google Scholar 

  3. J. Y. Sun, M. Y. Jing, J. F. Wang, et al., Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats, Nutrition 22, 187–196 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. A. S. Prasad, Biochemistry of zinc, Plenum, New York (1993).

    Google Scholar 

  5. M. I. Yousef, H. A. Hendy, F. M. Demerdash, and E. I. Elagamy, Dietary zinc deficiency induced-changes in the activity of enzymes and levels of free radicals, lipids and protein electrophoretic behavior in growing rats, Toxicology 175, 223–234 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. H. Tapiero and K. D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins, Biomed. Pharmacother. 57, 399–411 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. M. Kaji, zinc in endocrinology, Int Pediatr. 16, 1–7 (2001).

    Google Scholar 

  8. J. Y. Sun, M. Y. Jing, X. Y. Weng, et al., Effects of dietary zinc levels on the activities of enzymes, weights of organs and the concentrations of zinc and copper in growing rats, Biol. Trace. Element Res. 107(2), 153–165 (2005).

    Article  CAS  Google Scholar 

  9. J. Y. Sun, J. F. Wang, N. T. Zi, M. Y. Jing, and X. Y. Weng, Gene expression profiles analysis of the growing rat liver in response to different zinc status by cDNA microarray analysis, Biol. Trace Element Res. 115, 157–185 (2007).

    Article  Google Scholar 

  10. A. S. Prasad, A. Miale, Z. Farid, et al., Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism and dwarfism, J. Lab. Clin. Med. 61, 537–549 (1963).

    PubMed  CAS  Google Scholar 

  11. B. G. Stanley and S. F. Leibowitz, Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior, Proc. Natl. Acad. Sci. USA 82, 3940–3943 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. R. G. Lee, T. M. Rains, C. Tovar-Palacio, et al., Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding, J. Nutr. 128, 1218–1223 (1998).

    PubMed  CAS  Google Scholar 

  13. P. L. Selvais, C. Labuche, X. N. Nguyen, et al., Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat, J. Neuroendocrinol. 9, 55–62 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. N. F. Shay and H. F. Mangian, Neurobiology of zinc-influenced eating behavior, J. Nutr. 130, 1493S-1499S (2000).

    PubMed  CAS  Google Scholar 

  15. C. E. Huntington, N. F. Shay, E. Grouzmann, et al., Zinc status affects neurotransmitter activity in the paraventricular nucleus of rats, J. Nutr. 132, 270–275 (2002).

    PubMed  CAS  Google Scholar 

  16. C. W. Levenson, Zinc regulation of food intake: new insights on the role of neuropeptide Y, Nutr. Rev. 61(7), 247–258 (2003).

    Article  PubMed  Google Scholar 

  17. M. Fujimiya and A. Inui, Peptidergic regulation of gastrointestinal motility in rodents, Peptides 21, 1565–1582 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. S. C. Woods, Signals that influence food intake and body weight, Physiol Behav. 86, 709–716 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. M. Migaud, C. Durieux, J. Viereck, et al., The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A, Peptides 17, 601–607 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. R. K. Blanchard and R. J. Cousins, Differential display of intestinal mRNAs regulated by dietary zinc, Proc. Natl. Acad. Sci. USA 93, 6863–6868 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. K. J. Kennedy, T. M. Rains, and N. F. Shay, Zinc deficiency changes preferred maconutrient intake in subpopulations of Sprague-Dawley outbred rats and reduces hepatic pyruvate kinase gene expression, J. Nutr. 128, 43–49 (1998).

    PubMed  CAS  Google Scholar 

  22. J. E. Blundell, Serotonin and appetite, Neuropharmacology 23, 1537–1551 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. S. F. Leibowitz and J. T. Alexander, Hypothalamic serotonin in control of eating behavior, meal size and body weight, Biol. Psychiatry 44, 851–864 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. W. T. Chance, A. Balasubramaniam, F. S. Zhang, et al., Anorexia following the intrahypothalamic administration of amylin, Brain. Res. 539, 352–354 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. R. C. Frederich, A. Hamann, S. Anderson, et al., Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action, Nat. Med. 1, 1311–1314 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. S. K. Kim, Z. G. Lee, M. Shin, et al., The association of serum leptin with the reduction of food intake and body weight during electroacupuncture in rats, Pharm. Biochem. Behav. 83, 145–149 (2006).

    Article  CAS  Google Scholar 

  27. C. S. Mantzoros, A. S. Prasad, F. W. Beck, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr. 17, 270–275 (1998).

    PubMed  CAS  Google Scholar 

  28. J. C. Erick, G. Hollopeter, and R. D. Palmiter, Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y, Science 274, 1704–1707 (1996).

    Article  Google Scholar 

  29. M. W. Schwartz, D. G. Baskin, T. R. Bukowski, et al., Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice, Diabetes 45, 531–535 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. H. F. Mangian and R. G. Lee, G. L. Paul, et al., Zinc deficiency suppresses plasma leptin concentrations in rats, J. Nutr. Biochem. 9, 47–51 (1998).

    Article  CAS  Google Scholar 

  31. K. A. Ryan, R. Mitchel, and J. D. Shoemaker, Analysis of gas-chromatography-mass spectroscopy (GC-MS) as a tool to assess zinc status in humans, FASEB J. 12, 345 (1998).

    Google Scholar 

  32. M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc may be a mediator of leptin production in humans, Life Sci. 66, 2143–2149 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. L. M. Gaetke, R. C. Frederich, H. S. Oz, et al., Decreased food intake rather than zinc deficiency is associated with changes in plasma leptin, metabolic rate, and activity levels in zinc-deficient rats, J. Nutr. Biochem. 13, 237–244 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. V. B. Barr, D. Malide, M. J. Zarnowski, et al., Insulin stimulates both leptin secretion and production by rat white adipose tissue, Endocrinology 138, 4463–4472 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. A. M. Huber and S. N. Gershoff, Effect of dietary zinc deficiency in rats on insulin release from the pancreas, Nutrition 103, 1739–1744 (1973).

    CAS  Google Scholar 

  36. P. G. Reeves and B. L. O’Dell, The effect of zinc deficiency on glucose metabolism in meal-fed rats, Br. Nutr. 49, 441–452 (1983).

    Article  CAS  Google Scholar 

  37. Z. Kechrid and N. Bouzerna, Effect of zinc deficiency on zinc and carbohydrate metabolism in genetically diabetic (C57BL/Ksj Db+/Db+) and non-diabetic original strain (C57BL/Ksj) mice, Turk. J. Med. Sci. 34, 367–373 (2004).

    CAS  Google Scholar 

  38. T. M. Rains and N. F. Shay, Zinc status specifically changes preferences for carbohydrate and protein in rats selecting from separate carbohydrate-, protein-, and fat-containing diets, J. Nutr. 125, 2874–2879 (1995).

    PubMed  CAS  Google Scholar 

  39. National Research Council, Nutrient Requirements of Laboratory Animals, National Academy Press, Washington, DC (1995).

    Google Scholar 

  40. T. M. Rains, S. Hedrick, A. C. Randall, et al., Food intake patterns are altered during long-term zinc deficiency in rats, Physiol. Behav. 65, 473–478 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. P. G. Reeves and B. L. O’Dell, Short-term zinc deficiency in the rat and self-selection of dietary protein level, J. Nutr. 111, 375–383 (1981).

    PubMed  CAS  Google Scholar 

  42. P. G. Reeves, Patterns of food intake and self-selection of macronutrients in rats during short-term deprivation of dietary zinc, J. Nutr. Biochem. 14, 232–243 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. C. C. Welch, M. K. Grace, C. J. Billington, et al., Preference and diet type affect macronutrient selection after morphine, NPY, norepinephrine, and deprivation, Am. J. Physiol. 266, R426-R433 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, MY., Sun, JY. & Weng, XY. Insights on zinc regulation of food intake and macronutrient selection. Biol Trace Elem Res 115, 187–194 (2007). https://doi.org/10.1007/BF02686029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686029

Index Entries

Navigation