Skip to main content
Log in

The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The influence of microstructure on the strength, fracture toughness and low cycle fatigue behavior of 17-4 PH stainless steel has been examined. Aging hardening involves initial formation of coherent copper-rich clusters which transform to incoherent fee ∈-copper precipitates upon further aging. The changes in strength level and strain hardening rates observed during aging are consistent with previously suggested models for precipitation hardening based on differing elastic moduli. The fracture toughness and fatigue crack growth rates were shown to be a function of microstructure and environment. At equivalent strength levels overaging resulted in a higher fracture toughness than did underaging. The fatigue crack growth rates increased with increasing strength level and humidity but were not a function of toughness level. Attempts to correlate the fatigue crack growth rates with monotonie tensile properties were unsuccessful. However when final failure obeyed a critical strain criteria, the fracture toughness behavior could be reasonably described and related to preferential void nucleation and growth at δ-ferrite-matrix interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Carter, D. G. Farwick, A. M. Ross, and J. M. Uchida:Corrosion, 1971, vol. 26, p. 190.

    Article  Google Scholar 

  2. G. N. Goller and W. C. Clarke, Jr.:Iron Age, 1950, vol. 165, p. 86.

    CAS  Google Scholar 

  3. K. J. Irvine, D. T. Llewellyn, and F. B. Pickering:J. Iron Steel Inst, 1959, vol. 192, p. 218.

    CAS  Google Scholar 

  4. R. J. Goode:J. Mater. Res. and Stand., 1972, vol. 12, p. 31.

    Google Scholar 

  5. T. M. F. Ronald:Met. Trans., 1970, vol. 1, p. 2583.

    Article  Google Scholar 

  6. J. P. Hickerson, Jr. and R. W. Hertzberg:Met. Trans., 1972, vol. 3, p. 179.

    Article  CAS  Google Scholar 

  7. R. D. Schoone and E. A. Fishchione:Rev. Sci. Inst., 1966, vol. 37, p. 1351.

    Article  CAS  Google Scholar 

  8. H. J. Rack and D. Kalish:Met. Trans., 1971, vol. 2, p. 3011.

    Article  CAS  Google Scholar 

  9. K. C. Antony:J. Metals, 1963, vol. 15, p. 922.

    Google Scholar 

  10. M. O. Speidel, M. J. Blackburn, T. R. Beck, and J. A. Feeney:Proc. Int. Conf. Corrosion Fatigue, 1971, NACE-2, p. 324.

  11. A. J. McEvily and R. P. Wei:Proc. Int. Conf. Corrosion Fatigue, 1971, NACE-2, p. 381.

  12. R. P. Wei and J. D. Landes:Mater. Res. Stand., 1969, vol. 9, p. 25.

    Google Scholar 

  13. J. P. Gallagher and R. P. Wei:Proc. Int. Conf. Corrosion Fatigue, 1971, NACE-2 p. 409.

  14. W. F. Brown and J. E. Sprawley: STP 410, 1967, ASTM, p. 1.

  15. E. Hornbogen:Trans. ASM, 1964, vol. 57, p. 120.

    Google Scholar 

  16. G. Wassermann and P. Wincierz:Arch. Eisenhüttenw., 1958, vol. 12, p. 785.

    Google Scholar 

  17. E. Hornbogen and R. C. Glenn:Trans. TMS-AIME, 1960, vol. 218, p. 1064.

    Google Scholar 

  18. E. Hornbogen:Acta Met., 1962, vol. 10, p. 525.

    Article  CAS  Google Scholar 

  19. A. Youle and B. Ralph:Met. Sci. J., 1972, vol. 6, p. 149.

    Article  CAS  Google Scholar 

  20. M. R. Krishnadev and I. LeMay:J. Iron Steel Inst., 1970, vol. 208, p. 458.

    CAS  Google Scholar 

  21. A. Fujii, M. Nemoto, H. Suto, and K. Monma:Trans.JIM Suppl, 1968, vol. 9, p. 374.

    CAS  Google Scholar 

  22. S. Pattanaik, D. Tromans, and J. A. Lund:Trans. JIM Suppl, 1968, vol. 9, p. 381.

    CAS  Google Scholar 

  23. G. Knowles and P. M. Kelly:The Effect of Second-Phase Particles on the Mechanical Properties of Steel, p. 9, Iron and Steel Institute, 1971.

  24. K. C. Russell and L. M. Brown:Acta Met., 1972, vol. 20, p. 969.

    Article  CAS  Google Scholar 

  25. G. T. Hahn, R. C. Hoagland, and A. R. Rosenfield: AF33615-70-C-1630, August 1971.

  26. G. T. Hahn and R. Simon:Eng. Fract. Meek, 1973, vol. 5, p. 523.

    Article  CAS  Google Scholar 

  27. A. J. McEvily and T. L. Johnston:Int. J. Fract. Mech., 1967, vol. 3, p. 45.

    Article  CAS  Google Scholar 

  28. J. F. Throop and G. A. Miller: STP 467, 1970, ASTM, p. 154.

  29. F. A. McClintock: STP 415, 1967, ASTM, p. 170.

  30. F. A. McClintock:Proc. Int. Conf. Corrosion Fatigue, 1971, NACE-2, p. 289.

  31. B. Tomkins:Proc. Int. Conf. Corrosion Fatigue, 1971, NACE-2, p. 303.

  32. B. S. Pearson:Nature, 1966, vol. 211, p. 1077.

    Article  CAS  Google Scholar 

  33. J. M. Krafft: STP415, 1967, ASTM, p. 483.

  34. B. Tomkins, G. Summer, and J. Wareing:Fracture, p. 712, Chapman and Hall, Ltd., 1969.

  35. B. Tomkins:Phil. Mag., 1968, vol. 18, p. 1041.

    Article  CAS  Google Scholar 

  36. G. T. Hahn and A. R. Rosenfield: STP 432, 1968, ASTM, p. 5.

  37. J. M. Krafft:Appl. Mater. Res., 1964, vol. 3, p. 88.

    Google Scholar 

  38. J. R. Rice:Proc. 3rd Int. Conf. on Fracture, 1973, vol. 2, Paper 1-441.

  39. E. A. Lauchner:J. Mater., 1970, vol. 5, p. 129.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rack, H.J., Kalish, D. The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel. Metall Trans 5, 1595–1605 (1974). https://doi.org/10.1007/BF02646331

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646331

Keywords

Navigation