Skip to main content
Log in

Concurrent restructuring and oxidation of the surface of n-hexane plasma polymers during aging in air

  • Published:
Plasmas and Polymers

Abstract

Angle-dependent XPS and air/water contact angle (CA) measurements were performed on specimens of n-hexane plasma polymers at various times after fabrication in order to monitor the aging of the surfaces in contact with air. XPS revealed incorporation of oxygen over extended periods of time. The depth distribution of O changed in the course of aging. CAs decreased over the first 3 weeks, then increased again, and finally stabilized at 5 weeks. These results were interpreted in terms of two concurrent processes: spontaneous oxidation (initiated by trapped radicals), which increased the surface polarity, and surface restructuring, which caused the partial removal of polar groups from the interface with air. The former process made a larger contribution to the overall aging of the surfaces but the latter process also contributed measurably. Over the first 3 weeks, oxidation was rapid and surface restructuring was not competitive. Subsequently, the oxygen uptake slowed down markedly, and the outermost surface layers became oxygen depleted relative to the deeper layers, due to partial surface reorientation. The surface topography, assessed by STM, did not change on aging. The aging of n-hexane plasma polymer surfaces thus is due to superimposed effects arising from post-deposition oxidative processes and partial surface reorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Bell and J. R. Hollahan, eds.,Techniques and Application of Plasma Chemistry, Wiley, New York (1974).

    Google Scholar 

  2. R. d'Agostino, ed.,Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, San Diego (1990).

    Google Scholar 

  3. H. Yasuda, M. O. Bumgarner, H. C. Marsh, and N. Morosoff,J. Polym. Sci., Polym. Chem. Ed. 14, 195 (1976).

    Article  Google Scholar 

  4. U. Hetzler and E. Kay,J. Appl. Phys. 49, 5617 (1978).

    Article  ADS  Google Scholar 

  5. M. Friedrich, D. Hinze, and W. Ebert,Thin Solid Films 112, 61 (1984).

    Article  Google Scholar 

  6. A. M. Wrobel,J. Macromol. Sci. Chem. A22, 1089 (1985).

    Google Scholar 

  7. H. J. Griesser and R. C. Chatelier,J. Appl. Polym. Sci.: Appl. Polym. Symp. 46, 361 (1990).

    Article  Google Scholar 

  8. R. A. Engelman and H. K. Yasuda,Polym. Mater. Sci. Eng. 62, 19 (1990).

    Google Scholar 

  9. T. R. Gengenbach, Z. R. Vasic, R. C. Chatelier, and H. J. Griesser,J. Polym. Sci.: Pt. A: Polym. Chem. 32, 1399 (1994).

    Article  Google Scholar 

  10. J. D. Andrade, ed.,Polymer Surface Dynamics, Plenum Press, New York (1988).

    Google Scholar 

  11. E. Garbassi, M. Morra, and E. Occhiello,Polymer Surfaces—From Physics to Technology, Wiley, Chichester (1994).

    Google Scholar 

  12. F. J. Holly and M. Refojo,J. Biomed. Mater. Res. 9, 315 (1975).

    Article  Google Scholar 

  13. H. Yasuda, A. K. Sharma, and T. Yasuda,J. Polym. Sci., Polym. Phys. Ed. 19, 1285 (1981).

    Article  Google Scholar 

  14. F. Garbassi, M. Morra, E. Occhiello, L. Barino, and R. Scordamaglia,Surf. Interf. Anal. 14, 585 (1989).

    Article  Google Scholar 

  15. T. R. Gengenbach, X. Xie, R. C. Chatelier, and H. J. Griesser,J. Adhes. Sci. Technol. 8, 305 (1994).

    Google Scholar 

  16. T. Yasuda, K. Yoshida, T. Okuno, and H. Yasuda,J. Polym. Sci.: Pt. B.: Polym. Phys. 26, 2061 (1988).

    Article  Google Scholar 

  17. C. L. Hamermesh and P. J. Dynes,J. Polym. Sci., Polym. Lett. Edn. 13, 663 (1975).

    Article  Google Scholar 

  18. H. J. Griesser,Vacuum 39, 485 (1989).

    Article  Google Scholar 

  19. A. E. Hughes and B. A. Sexton,J. Electr. Spectrosc. Relat. Phenom. 46, 31 (1988).

    Article  Google Scholar 

  20. R. F. Roberts, D. L. Allara, C. A. Pryde, D. N. E. Buchanan, and N. D. Hobbins,Surf. Interf. Anal. 2, 5 (1980).

    Article  Google Scholar 

  21. T. R. Gengenbach, Z. R. Vasic, S. Li, R. C. Chatelier, and H. J. Griesser,Plasmas and Polymers (submitted).

  22. R. E. Johnson and R. H. Dettre,Surf. Coll. Sci. 2, 85 (1969).

    Google Scholar 

  23. J. N. Israelachvili and M. L. Gee,Langmuir 5, 288 (1989).

    Article  Google Scholar 

  24. M. Morra, E. Occhiello, and F. Garbassi,Adv. Coll. Interf. Sci. 32, 79 (1990).

    Article  Google Scholar 

  25. R. N. Wenzel,Ind. Eng. Chem 28, 988 (1936).

    Article  Google Scholar 

  26. R. C. Chatelier, X. Xie, T. R. Gengenbach, and H. J. Griesser,Langmuir 11, 2576 (1995).

    Article  Google Scholar 

  27. C. D. Bain and G. M. Whitesides,J. Am. Chem. Soc. 110, 5897 (1988).

    Article  Google Scholar 

  28. R. C. Chatelier, X. Xie, T. R. Gengenbach, and H. J. Griesser,Langmuir 11, 2585 (1995).

    Article  Google Scholar 

  29. J. G. Steele, G. Johnson, C. McFarland, B. A. Dalton, T. R. Gengenbach, R. C. Chatelier, P. A. Underwood, and H. J. Griesser,J. Biomater. Sci., Polym. Ed. 6, 511 (1994).

    Google Scholar 

  30. J. G. Steele, G. Johnson, T. R. Gengenbach and H. J. Griesser (unpublished results).

  31. H. J. Griesser, R. C. Chatelier, T. R. Gengenbach, G. Johnson, and J. G. Steele,J. Biomater. Sci., Polym. Ed. 5, 531 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gengenbach, T.R., Vasic, Z.R., Chatelier, R.C. et al. Concurrent restructuring and oxidation of the surface of n-hexane plasma polymers during aging in air. Plasma Pol 1, 207–228 (1996). https://doi.org/10.1007/BF02532817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532817

Key Words

Navigation