Skip to main content
Log in

Developmental genetics of leaf morphogenesis in dicotyledonous plants

  • Minireview
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A full understanding of the leaf is essential for a full understanding of plant morphology. However, leaf morphogenesis is still poorly understood, in particular in dicotyledonous plants, because of the complex nature of the development of leaves. Mutational analysis seems to be the most suitable strategy for investigations of such processes, and should allow us to dissect the developmental pathways into genetically programmed unit processes. The techniques of developmental genetics have been applied to the study of leaf morphogenesis in model plants, such asArabidopsis thaliana, and several key processes in leaf morphogenesis have been identified. The fundamental processes in leaf morphogenesis include the identification of leaf organs, determination of leaf primordia (occurrence of marginal meristem), and the polar or non-polar elongation of leaf cells. This review will focus on the genes that are essential for these processes and have been identified in mutational analyses. Mutational analyses of the photomorphogenesis is also briefly summarized from the perspective of the plasticity of leaf morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aeschbacher, R.A., Hauser, M.-T., Feldmann, K.A. andBenfey, P.N. 1995. TheSABRE gene is required for normal cell expansion inArabidopsis. Genes Dev.9: 330–340.

    CAS  PubMed  Google Scholar 

  • Avery, G.S.Jr. 1933. Structure and development of the tobacco leaf. Amer. J. Bot.20: 565–592.

    Google Scholar 

  • Barabas, Z. andRédei, G.P. 1971. Facilitation of crossing by the use of appropriate parental stocks. Arabidopsis Inf. Ser.8: 7–8.

    Google Scholar 

  • Barton, M.K. andPoethig, R.S. 1993. Formation of the shoot apical meristem inArabidopsis thaliana: an analysis of development in the wild type and in theshoot meristemsless mutant. Development119: 823–831.

    Google Scholar 

  • Caruso, J.L. 1968. Morphogenetic aspects of a leafless mutant in tomato I. General pattern in development. Amer. J. Bot.55: 1169–176.

    Google Scholar 

  • Child, R., Morgan, D.C. andSmith, H. 1981. Control of development inChenopodium album L. by shadelight. The effect of light quality (red: far-red ratio) on morphogenesis. New Phytol.89: 545–555.

    Google Scholar 

  • Chory, J. 1992. A genetic model for light-regulated seedling development inArabidopsis. Development115: 337–354.

    CAS  Google Scholar 

  • Coen, E.S. andMeyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature353: 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Cusset, G. 1986. La morphogenèse du limbe des Dicotylédones. Can. J. Bot.64: 2807–2839.

    Google Scholar 

  • Dale, J.E. 1988. The control of leaf expansion. Annu. Rev. Plant Physiol. Plant Mol. Biol.39: 267–295.

    Article  Google Scholar 

  • Deng, X.-W. andQuail, P.H. 1992. Genetic and phenotypic characterization ofcop1 mutants ofArabidopsis thaliana. Plant J.2: 83–95.

    Article  CAS  Google Scholar 

  • Duke, S.O. andLane, A.D. 1984. Phytochrome control of its own accumulation and leaf expansion in tentoxinand norflurazon-treated mung bean seedlings. Physiol. Plant.60: 341–346.

    CAS  Google Scholar 

  • Engelke, A.L., Hamzi, Q.H. andSkoog, F. 1973. Cytokinin-gibberellin regulation of shoot development and leaf form in tobacco plantlets. Amer. J. Bot.60: 491–495.

    CAS  Google Scholar 

  • Eschrich, W., Burchardt, R. andEssiamah, S. 1989. The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees3: 1–10.

    Article  Google Scholar 

  • Evans, M.W. andGrover, F.O. 1940. Developmental morphology of the growing point of the shoot and the inflorescence in grasses. J. Agricul. Res.61: 481–520.

    Google Scholar 

  • Foster, A.S. 1936. Leaf differentiation in angiosperms. Bot. Rev.2: 349–372.

    Google Scholar 

  • Goto, N., Kumagai, T. andKoornneef, M. 1991. Flowering responses to light-breaks in photomorphogenic mutants ofArabidopsis thaliana, a long-day plant. Physiol. Plant.83: 209–215.

    Article  Google Scholar 

  • Gottlieb, L.D. 1984. Genetics and morphological evolution in plants. Amer. Natl.123: 681–709.

    Google Scholar 

  • Hara, N. 1957. On the types of the marginal growth in dicotyledonous foliage leaves. Bot. Mag. Tokyo70: 108–114.

    Google Scholar 

  • Hara, N. 1959. Marginal growth of leaves. Nature183: 1409–1410.

    Google Scholar 

  • Harte, C. 1979. Phänogenetik der Blattform beiAntirrhinum majus L. I. Variabilität des Formindex in Abhängigkeit von Genotyp und Umwelt. Biol. Zbl.98: 21–35.

    Google Scholar 

  • Hill, A.W. 1938. The monocotyledonous seedlings of certain dicotyledons. With special reference to the Gesneriaceae. Ann. Bot.2: 127–143.

    Google Scholar 

  • Hilu, K.W. 1983. The role of single-gene mutations in the flowering plants. Evol. Biol.16: 97–128.

    Google Scholar 

  • Hou, Y., von Arnim, A.G. andDeng, X.-W. 1993. A new class ofArabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development. Plant Cell5: 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Imai, Y. 1938. The genes of the Japanese morning glory. Japan. J. Genet.14: 24–33.

    Google Scholar 

  • Imaichi, R. andKato, M. 1992. Comparative leaf development ofOsmunda lancea andO. japonica (Osmundaceae): heterochronic origin of rheophytic stenophylly. Bot. Mag. Tokyo105: 199–213

    Google Scholar 

  • Jackson, D., Veit, B. andHake, S. 1994. Expression of maizeKNOTTED1-related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development120: 405–413.

    CAS  Google Scholar 

  • Jones, C.S. 1993. Heterochrony and heteroblastic leaf development in two subspecies ofCucurbita argyrosperma (Cucurbitaceae). Amer. J. Bot.80: 778–795.

    Google Scholar 

  • Jong, K. andBurtt, B.L. 1975. The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol.75: 297–311.

    Google Scholar 

  • Kaplan, D.R. andHagemann, W. 1991. The relationship of cell and organism in vascular plants. — Are cells the building block of plant form? BioScience41: 693–703.

    Google Scholar 

  • Kato, M. andImaichi, R. 1991. Leaf anatomy of tropical fern rheophytes, with its evolutionary and ecological implications. Can. J. Bot.70: 165–174.

    Google Scholar 

  • Koornneef, M., van Eden, J., Hanhart, C.J., Stam, P., Braaksma, F.J. andFeenstra, W.J. 1983. Linkage map ofArabidopsis thaliana. J. Hered.74: 265–272.

    Google Scholar 

  • Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meler, D. andRahmsdorf, U. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Res.2: 115–141.

    CAS  Google Scholar 

  • Lightner, J., James Jr., D.W., Dooner, H.K. andBrowse, J. 1994. Altered body morphology is caused by increased stearate levels in a mutant ofArabidopsis. Plant J.6: 401–412.

    Article  CAS  Google Scholar 

  • Lincoln, C., Britton, J.H. andEstelle, M. 1990. Growth and development of theaxr1 mutants ofArabidopsis. Plant Cell2: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  • Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. andHake, S. 1994. AKnotted1-like homeobox gene inArabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overex-pressed in transgenic plants. Plant Cell6: 1859–1876.

    Article  CAS  PubMed  Google Scholar 

  • Maksymowych, R. 1963. Cell division and cell elongation in leaf development ofXanthium pennsylvanicum. Amer. J. Bot.50: 891–901.

    Google Scholar 

  • Maksymowych, R. andMaksymowych, A.B. 1973. Induction of morphogenetic changes and acceleration of leaf initiation by gibberellic acid inXanthium pennsylvanicum. Amer. J. Bot.60: 901–906.

    CAS  Google Scholar 

  • Marx, G.A. 1983. Developmental mutants in some annual seed plants. Annu. Rev. Plant Physiol.34: 389–417.

    Article  Google Scholar 

  • Matsuoka, M., Ichlkawa, H., Saito, A., Tada, Y., Fujimura, T. andKano-Murakami, K. 1993. Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell5: 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • McHale, N.A. 1993.LAM-1 andFAT genes control development of the leaf blade inNicotiana sylvestris. Plant Cell5: 1029–1038.

    Article  PubMed  Google Scholar 

  • McLaren, J.S. andSmith, H. 1978. Phytochrome control of the growth and development ofRumex obtusifolius under simulated canopy light environments. Plant Cell Environ.1: 61–67.

    Google Scholar 

  • McLellan, T. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shapes inBegonia dregei (Begoniaceae). Amer. J. Bot.80: 796–804.

    Google Scholar 

  • Meinke, D.W. 1992. A homoeotic mutant ofArabidopsis thaliana with leafy cotyledons. Science258: 1647–1650.

    Google Scholar 

  • Meinke, D.W., Franzmann, L.H., Nickle, T.C. andYeung, E. 1994.Leafy cotyledon mutants ofArabidopsis. Plant Cell6: 1049–1064.

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz, E.M. andPruitt, R.E. 1985.Arabidopsis thaliana and plant molecular genetics. Science229: 1214–1218.

    CAS  Google Scholar 

  • Morgan, D.C. andSmith, H. 1979. A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta145: 253–258.

    Article  CAS  Google Scholar 

  • Morgan, D.C. andSmith, H. 1981. Control of development inChenopodium album L. by shadelight: the effect of light quantity (total fluence rate) and light quality (red: far-red ratio). New Phytol.88: 239–248.

    Google Scholar 

  • Nagatani, A., Chory, J. andFuruya, M. 1991. Phytochrome B is not detectable in thehy3 mutant ofArabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol.32: 1119–1122.

    CAS  Google Scholar 

  • Nagatani, A., Reed, J.W. andChory, J. 1993. Isolation and initial characterization ofArabidopsis mutants that are deficient in phytochrome A. Plant Physiol.102: 269–277.

    CAS  PubMed  Google Scholar 

  • Poethig, R.S. andSussex, I.M. 1985. The developmental morphology and growth dynamics of the tobacco leaf. Planta165: 158–169.

    Google Scholar 

  • Pyke, K.A., Marrison, J.L. andLeech, R.M. 1991. Temporal and spatial development of the cells of the expanding first leaf ofArabidopsis thaliana (L.) Heynh. J. Exp. Bot.42: 1407–1416.

    Google Scholar 

  • Rédei, G.P. 1962. Single locus heterosis. Z. Vererbungs.93: 164–170.

    Google Scholar 

  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. andChory, J. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughoutArabidopsis development. Plant Cell5: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Röbbelen, G. 1957. Über heterophyllie beiArabidopsis thaliana (L.) Heynh. Ber. Dt. Bot. Ges.70: 39–44.

    Google Scholar 

  • Robson, P.R., Whitelam, G.C. andSmith, H. 1993. Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants ofArabidopsis thaliana andBrassica rapa deficient in phytochrome B. Plant Physiol.102: 1179–1184.

    CAS  PubMed  Google Scholar 

  • Roe, J.L., Rivin, C.J., Sessions, R.A., Feldmann, K.A. andZambryski, P.C. 1993. TheTousled gene inA. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell75: 939–950.

    Article  CAS  PubMed  Google Scholar 

  • Sinnott, E.W. 1958. The genetic basis of organic form. Ann. N.Y. Acad. Sci.71: 1223–1233.

    CAS  PubMed  Google Scholar 

  • Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol.46: 289–315.

    Article  CAS  Google Scholar 

  • Smith, L.G., Greene, B., Veit, B. andHake, S. 1992. A dominant mutation in the maize homeobox gene,Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development116: 21–30.

    CAS  PubMed  Google Scholar 

  • Smith, L.G. andHake, S. 1992. The initiation and determination of leaves. Plant Cell4: 1017–1027.

    Article  PubMed  Google Scholar 

  • Smith, L.G. andHake, S. 1993. Molecular genetic approaches to leaf development:Knotted and beyond. Can. J. Bot.72: 617–625.

    Google Scholar 

  • Steeves, T.A. 1961. A study of the developmental potentialities of excised leaf primordia in sterile culture. Phytomorphology11: 346–349.

    Google Scholar 

  • Steeves, T., Hicks, G., Steeves, M. andRetallack, B. 1993. Leaf determination in the fernOsmunda cinnamomea — A reinvestigation. Ann. Bot.71: 511–517.

    Article  Google Scholar 

  • Steeves, T.A. andSussex, I.M. 1989. Patterns in Plant Development. 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Takahashi, T., Gasche, A., Nishizawa, N. andChua, N.-H. 1995. TheDIMINUTO gene ofArabidopsis is involved in regulating cell elongation. Genes Dev.9: 97–107.

    CAS  PubMed  Google Scholar 

  • Tsuge, T., Tsukaya, H. and Uchimiya, H. 1990. Two independent and polarized processes of cell elongation regulate leaf blade expansion inArabidopsis thaliana (L.) Heynh. Development (in press).

  • Tsukaya, H. 1995. The genetic control of morphogenesis inArabidopsis and its relevance to the development of biodiversity.In R. Arai, M. Kato and Y. Doi, eds., Biodiversity and Evolution, The National Science Museum Foundation, Tokyo, (in press).

    Google Scholar 

  • Tsukaya, H., Inaba-Higano, K. andKomeda, Y. 1995. Phenotypic and molecular mapping of anacaulis2 mutant ofArabidopsis thaliana with flower stalks of much reduced length. Plant Cell Physiol.36: 239–246.

    CAS  Google Scholar 

  • Tsukaya, H., Naito, S., Rédei, G.P. andKomeda, Y. 1993. A new class of mutations inArabidopsis thaliana, acaulis1, affecting the development of both inflorescences and leaves. Development118: 751–764.

    CAS  Google Scholar 

  • Tsukaya, H., Tsuge, T. andUchimiya, H. 1994. The cotyledon: a superior system for studies of leaf development. Planta195: 309–312.

    Article  CAS  Google Scholar 

  • Usukura, M., Imaichi, R. andKato, M. 1994. Leaf morphology of a facultative rheophyte,Farfugium japonicum var.luchuense (Compositae). J. Plant Res.107: 263–267.

    Google Scholar 

  • Van Lijsebettens, M., Vanderhaeghen, R. andVan Montague, M. 1991. Insertional mutagenesis inArabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor. Appl. Genet.81: 277–284.

    Article  Google Scholar 

  • Van Lijsebettens, M., Vanderhaeghen, R., De Block, M., Bauw, G., Villarroel, R. andVan Montague, M. 1994. An S18 ribosomal protein gene copy at theArabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J.13: 3378–3388.

    PubMed  Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N. andHake, S. 1991. The developmental geneKnotted-1 is a member of a maize homeobox gene family. Nature350: 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Waites, R. andHudson, A. 1995.phantastica: a gene required for dorsoventrality of leaves inAntirrhinum majus. Development121: 2143–2154.

    CAS  Google Scholar 

  • West, M.A.L., Yee, K.M., Danao, J., Zimmerman, J.L., Fischer, R.L., Goldberg, R.B. andHarada, J.J. 1994.LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity inArabidopsis. Plant Cell6: 1731–1745.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, W. 1953. Main results of the “telome theory”. Paleobot.1: 456–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukaya, H. Developmental genetics of leaf morphogenesis in dicotyledonous plants. J. Plant Res. 108, 407–416 (1995). https://doi.org/10.1007/BF02344229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344229

Key words

Navigation