Skip to main content
Log in

Somatic embryo cycling: Evaluation of a novel transformation and assay system for seed-specific gene expression in soybean

  • Original Research Papers
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Somatic embryo cycling, a modification of soybean somatic embryogenic suspension culture, was developed as an efficient and rapid method of producing tissue suitable for stable transformation of soybean germplasm by biolistic particle bombardment. Instead of using immature seed explants, cotyledon-staged somatic embryo hypocotyls were placed on auxin-containing medium, where they initiated new somatic embryos primarily from single epidermal cells. By bombarding hypocotyls prior to initiation of subsequent embryo formation, we have effectively transformed soybean somatic embryos with the reporter genes neomycin phosphotransferase,gb-glucuronidase, and a mammalian stearyl CoA delta-9 desaturase, controlled by a seed-specific promoter. These embryos contain significantly reduced levels of saturated palmitic and stearic fatty acids, and significant amounts of monounsaturated palmitoleic acid, which is not normally abundant in soybean seeds. This study demonstrates the effectiveness of somatic embryo cycling for soybean transformation, and for testing expression of genes for seed-specific proteins. Abnormal flower development in recovered plants is a limitation for application of the technique to produce transgenic seed at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

D9DS:

delta-9 desaturase

GUS:

β-glucuronidase

NPTII:

neomycin phosphotransferase II

CaMV:

cauliflower mosaic virus 35S promoter

CoA:

coenzyme A

SDS:

sodium dodecyl sulfate

PAGE:

polyacrylamide gel electrophoresis

β-ME:

β-mercaptoethanol

2,4-d :

2,4 dichlorophenoxyacetic acid

NAA:

napthaleneacetic acid

References

  • Beachy RN, Chen Z-L, Horsch RB, Rogers SG, Hoffmann NJ & Fraley RT (1985) Accumulation and assembly of soybeanβ-conglycinin in seeds of transformed petunia plants. EMBO J 4: 3047–3053

    CAS  PubMed  Google Scholar 

  • Cho M-J, Widholm JM & Vodkin LO (1995) Cassettes for seed-specific expression tested in transformed embryogenic cultures of soybean. Plant Mol. Biol. Rep. 13: 255–269

    CAS  Google Scholar 

  • Christou P, Swain WF, Yang N-S & McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA. 86: 7500–7504

    CAS  Google Scholar 

  • Dahmer ML, Fleming PD, Collins GB & Hildebrand DF (1989) A rapid screening technique for determining the lipid composition of soybean seeds. J. Am. Oil Chem. Soc. 66(4): 543–548

    CAS  Google Scholar 

  • Datla RSS, Hammerlindl JK, Pelcher LE, Crosby WL & Selvaraj G (1991) A bifunctional fusion between beta-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101: 239–246

    Article  CAS  PubMed  Google Scholar 

  • Denke MA & Grundy SM (1992) Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am. J. Clin. Nutr. 56(5): 895–898

    CAS  PubMed  Google Scholar 

  • Enoch HG, Catala A & Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase. J. Biol. Chem. 251: 5095–5103

    CAS  PubMed  Google Scholar 

  • Finer JJ & McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P: 175–182

    CAS  Google Scholar 

  • Finer JJ & Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.) Plant Cell Tiss. Org. Cult. 15: 125–136

    Article  CAS  Google Scholar 

  • Grayburn WS, Collins GB & Hildebrand DF (1992) Fatty acid alteration by a delta-9 desaturase in transgenic tobacco tissue. Bio/Technol. 10: 675–678

    Article  CAS  Google Scholar 

  • Harwood IL (1988) Fatty acid metabolism. Ann. Rev. Plant Physiol. Mol. Biol. 39:101–138

    Article  CAS  Google Scholar 

  • Hartweck, LM, Lazzeri, PA, Cui D, Collins GB & Williams EG (1988) Auxin-orientation effects on somatic embryogenesis from immature soybean cotyledons. In Vitro Cell. Dev. Biol. 24: 821–828

    CAS  Google Scholar 

  • Hinchee MAW, Conner-Ward DV, McDonnell RE, Sato SJ, Gasser CS, Fischof DA, Re DB, Fraley RT & Horsch RB (1988) Production of transgenic plants usingAgrobacterium-mediated DNA transfer. Bio/Technol. 6: 915–922

    Article  CAS  Google Scholar 

  • Hitz WD, Yadav NS, Reiter RS, Mauvais CJ & Kinney AJ (1995) Reducing polyunsaturation in oils of transgenic canola and soybean. In: Kader J-D & Mazliak P (eds.) Plant Lipid Metabolism. Dordrecht: Kluwer Academic Publishers (pp 506–508)

    Google Scholar 

  • Imaizumi K, Abe K, Kuroiwa & Sugano M (1993) Fat containing stearic acid increases fecal neutral steroid excretion and catabolism of low density lipoproteins without affecting plasma cholesterol concentration in hamsters fed a cholesterol-containing diet. J. Nutr. 123(10): 1693–17025

    CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:144–151

    Google Scholar 

  • Klein TM, Wolf ED, Wu R & Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 327: 70–73

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Moore PJ & Collins GB (1992) Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell. Dev. Biol. 28P:153–160

    Google Scholar 

  • McCabe D E, Swain WF, Martinell BJ & Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol. 6: 923–926

    Article  Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG & Collins GB (1989a) Recovery of primary transformants of soybean. Plant Cell Rep. 7: 615–617

    CAS  Google Scholar 

  • Parrott WA, WIlliams EG, Hildebrand DF & Collins GB (1989b) Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell, Tissue and Organ Culture 16: 15–21

    Google Scholar 

  • Parsons TJ, Bradshaw Jr. HD & Gordon MP (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc. Natl. Acad. Sci. USA 86: 7895–7899

    CAS  PubMed  Google Scholar 

  • Polashock JJ, Chin C-K & Martin CE (1992) Expression of yeast delta-9 fatty acid desaturase inNicotiana tabacum. Plant Physiol. 100: 894–901

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A laboratory Manual. Cold Spring Harbor Press

  • Schnebly SR & Fehr W (1993) Effect of years and planting dates on fatty acid composition of soybean genotypes. Crop Sci. 33: 716–719

    CAS  Google Scholar 

  • Strittmatter P, Thiede MA, Hackett CS & Ozolo J (1988) Construction of active rat steayl-CoA desaturase lacking the 26 residue N-terminal amino acid sequence. J. Biol. Chem. 263: 2532–2536

    CAS  PubMed  Google Scholar 

  • Theide MA, Ozolo J & Strittmatter P (1986) Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J. Biol. Chem. 261: 13230–13235

    Google Scholar 

  • Townsend JA (1992) Accumulation of a methionine-rich Brazil Nut protein in seeds of transgenic soybean. Agronomy Abstracts, American Society of Agronomy, 84th Annual Meeting, 198, 1992

  • Townsend JA (Patent) PIONEER HI-BRED INTERNATIONAL, INC. An Improved Method of Agrobacterium-Mediated Transformation of Cultured Soybean Cells. 3 Feb 94 WO/94/02620

  • Wang S & Koo SI (1993) Evidence for distinct metabolic utilization of stearic acid in comparison with palmitic and oleic acids in rats. J. Nutr. Biochem. 4(10): 594–601

    CAS  Google Scholar 

  • Yang NS & P Christou (1990) Cell type specific expression of a CaMV 35S-GUS gene in transgenic soybean plants. Dev. Genet. 11(4): 289–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Torisky, R.S., McAllister, K.P. et al. Somatic embryo cycling: Evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Tiss Organ Cult 47, 33–42 (1996). https://doi.org/10.1007/BF02318963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318963

Key words

Navigation