Skip to main content
Log in

Autonomously replicating plasmids carrying theAMA1 region inPenicillium chrysogenum

Current Genetics Aims and scope Submit manuscript

Abstract

Plasmid vectors containing theAMA1 sequence transformed with high efficiency and replicated autonomously inPenicillium chrysogenum. The efficiency of transformation ofP. chrysogenum was related to the length of theAMA1 fragment used for constructing the different autonomously replicating plasmids. One of the two palindromic inverted repeats ofAMA1 (the 2.2-kbSalI-HindIII fragment) is sufficient to confer autonomous replication and a high transformation efficiency. Deletion of the 0.6-kb central fragment located between the inverted repeats did not affect either the ability of the plasmids to replicate autonomously or the efficiency of transformation, but did alter the mitotic stability and the plasmid copy number. Deletion of any fragment of the 2.2-kb repeat caused the loss of the ability to replicate autonomously and reduced the transformation efficiency. Most of the transformants retained the original plasmid configuration, as multimers and without reorganization, after several rounds of autonomous replication. TheAMA1 region works as an origin of replication inP. chrysogenum andA. nidulans but not apparently inAcremonium chrysogenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104

    PubMed  Google Scholar 

  • Bej A, Perlin MH (1991) Acquisition of mitochondrial DNA by a transformation vector forUstilago violacea. Gene 98:135–140

    PubMed  Google Scholar 

  • Brückner B, Unkles SE, Weltring K, Kinghorn J (1992) Transformation ofGibberella fujikuroi: effect of theAspergillus nidulans AMA1 sequence on frequency and integration. Curr Genet 22:313–316

    PubMed  Google Scholar 

  • Bull JH, Smith DJ, Turner G (1988) Transformation ofPenicillium chrysogenum with a dominant selectable marker. Curr Genet 13:377–383

    PubMed  Google Scholar 

  • Cantoral JM, Díez B, Barredo JL, Alvarez E, Martín JF (1987) High-frequency transformation ofPenicillium chrysogenum. Bio/Technol 5:494–497

    Google Scholar 

  • Cantoral JM, Barredo JL, Díez B, Martín JF (1988) Nucleotide sequence of thePenicillium chrysogenum pyrG (orotidine-5′-phosphate decarboxylase) gene. Nucleic Acids Res 16:8177

    PubMed  Google Scholar 

  • Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H, Martín JF (1993) Biochemical characterization and molecular genetics of nine mutants ofPenicillium chryosogenum impaired in penicillin biosynthesis. J Biol Chem 268:737–744

    PubMed  Google Scholar 

  • Demain AL (1983) Strain exchange between industry and academia. ASM News 49:431

    Google Scholar 

  • Díez B, Alvarez E, Cantoral JM, Barredo JL, Martín JF (1987) Selection and characterization ofpyrG mutants ofPenicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by thepyr4 gene ofNeurospora crassa. Curr Genet 12:277–282

    Google Scholar 

  • Fierro F, Gutiérrez S, Díez B, Martín JF (1993) Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 mb) inPenicillium notatum and chromosome I (10.4 mb) inPenicillium chrysogenum. Mol Gen Genet 241:573–579

    PubMed  Google Scholar 

  • Fierro F, Montenegro E, Gutiérrez S, Martín JF (1995) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol (in press)

  • Gems D, Johnston IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transformsAspergillus nidulans at high frequency. Gene 98:61–67

    PubMed  Google Scholar 

  • Gouka RJ, van Hartingsveldt W, Bovenberg RAL, van Zeijl CMJ, van den Hondel CAMJJ, van Gorcom RFM (1993) Development of a new transformant selection system forPenicillium chrysogenum: isolation and characterization of theP. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol 38:514–519

    PubMed  Google Scholar 

  • Gutiérrez S, Díez B, Montenegro E, Martín JF (1991a) Characterization of theCephalosporium acremonium pcbAB gene encoding α-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to thepcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173:2354–2365

    Google Scholar 

  • Gutiérrez S, Díez B, Alvarez E, Barredo JL, Martín JF (1991b) Expression of thepenDE gene ofPenicillium chrysogenum encoding isopenicillin N acetyltransferase inCephalosporium acremonium: production of benzylpenicillin by the transformants. Mol Gen Genet 225:56–64

    Google Scholar 

  • Gutiérrez S, Velasco J, Fernández FJ, Martín JF (1992) ThecefG gene ofCephalosporium acremonium is linked to thecefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol 174:3056–3064

    PubMed  Google Scholar 

  • Hanahan D (1986) Techniques for transformation ofE. coli. In: Glover DM (ed) DNA Cloning, vol. 1. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Hughes K, Case ME, Geever R, Vapnek D, Giles NH (1983) A chimeric plasmid that replicates autonomously in bothEscherichia coli andNeurospora crassa. Proc Natl Acad Sci USA 80: 1053–1057

    PubMed  Google Scholar 

  • Kolar M, Punt PJ, van den Hondel CAMJJ, Schwab H (1988) Transformation ofPenicillium chrysogenum using dominant selection markers and expression of anEscherichia coli lacZ fusion gene. Gene 62:127–134

    PubMed  Google Scholar 

  • Montenegro E, Fierro F, Fernández FJ, Gutiérrez S, Martín JF (1992) Resolution of chromosomes III and VI ofAspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genespcbAB, pcbC, andpenDE are clustered on chromosome VI (3.0 megabases). J Bacteriol 174:7063–7067

    PubMed  Google Scholar 

  • Onions AHS, Brady BL (1987) Taxonomy ofPenicillium andAcremonium. In: Peberdy JF (ed)Penicillium andAcremonium. Plenum Press, New York, pp 1–36

    Google Scholar 

  • Peng M, Singh NK, Lemke PA (1992) Recovery of recombinant plasmids fromPleurotus ostreatus transformants. Curr Genet 22: 53–59

    PubMed  Google Scholar 

  • Peng M, Lemke PA, Singh NK (1993) A nucleotide sequence inolved in replicative transformation of a filamentous fungus. Curr Genet 24:114–121

    PubMed  Google Scholar 

  • Perlin MH, Bej AK, Will OH, Jacob RJ (1990) Introduction and maintenance of prokaryotic DNA inUstilago violacea. J Indust Microbiol 5:355–364

    Google Scholar 

  • Randall T, Rao T, Reddy CA (1989) Use of a shuttle vector for the transformation of the white rot basidiomycete,Phanerochaete chrysosporium. Biochem Biophys Res Commun 161:720–725

    PubMed  Google Scholar 

  • Randall T, Reddy CA, Boominathan K (1991) A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycetePhanerochaete chrysosporium. J Bacteriol 173:776–782

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Som T, Armstrong KA, Volkert FC, Broach JR (1988) Autoregulation of 2 μm circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:27–37

    PubMed  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035

    PubMed  Google Scholar 

  • Tilburn J, Scazzochio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davis RW (1983) Transformation by integration inAspergillus nidulans. Gene 26:205–221

    PubMed  Google Scholar 

  • Van Heeswicjck R, Roncero MIG (1984) High-frequency transformation ofMucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702

    Google Scholar 

  • Van Houten JV, Newton CS (1990) Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10:3917–3925

    PubMed  Google Scholar 

  • Williamson DH (1985) The yeast ARS element, six years on: a program report. Cell 42:951–958

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fierro, F., Kosalková, K., Gutiérrez, S. et al. Autonomously replicating plasmids carrying theAMA1 region inPenicillium chrysogenum . Curr Genet 29, 482–489 (1996). https://doi.org/10.1007/BF02221518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221518

Key words

Navigation