Skip to main content
Log in

Heat shock response in Drosophila

  • Multi-Author Reviews
  • Heat Shock Proteins
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Major alterations in genetic activity have been observed in every organism after exposure to abnormally high temperatures. This phenomenon, called the heat shock response, was discovered in the fruit flyDrosophila. Studies with this organism led to the discovery of the heat shock proteins, whose genes were among the first eukaryotic genes to be cloned. Several of the most important aspects of the regulation of the heat shock response and of the functions of the heat shock proteins have been unraveled inDrosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Amin, J., Mestril, R., Lawson, R., Klapper, H., and Voellmy, R., The heat shock consensus sequence is not sufficient for hsp70 gene expression inDrosophila melanogaster. Molec. cell Biol.5 (1985) 197–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Amin, J., Ananthan, J., and Voellmy R., Key features of heat shock regulatory elements. Molec. cell Biol.8 (1988) 3761–3769.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arrigo, A.-P., Acetylation and methylation patterns of core histones are modified after heat or arsenite treatment ofDrosophila melanogaster tissue culture cells. Nucl. Acids Res.11 (1983) 1389–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arrigo, A.-P., Cellular localization of hsp23 duringDrosophila development and subsequent heat shock. Devl Biol.122 (1987) 39–48.

    Article  CAS  Google Scholar 

  5. Arrigo, A.-P., Fakan, S., and Tissières, A., Localization of the heat shock induced proteins inDrosophila melanogaster tissue culture cells. Devl Biol.78 (1980) 86–103.

    Article  CAS  Google Scholar 

  6. Ashburner, M., Patterns of puffing activity in the salivary gland chromosomes ofDrosophila V. Responses to environmental treatments. Chromosoma31 (1970) 356–376.

    Article  CAS  PubMed  Google Scholar 

  7. Beermann, W., Nuclear differentiation and functional morphology of chromosomes. Cold Spring Harbor Symp. Quant. Biol.21 (1956) 217–232.

    Article  CAS  PubMed  Google Scholar 

  8. Berger, E. M., Vitek, M. P., and Morganelli, C. M., Transcript length heterogeneity at the small heat shock genes ofDrosophila. J. molec Biol.186 (1985) 137–148.

    Article  CAS  PubMed  Google Scholar 

  9. Biessmann, H., Falkner, F.-G., Saumweber, H., and Walter, M. F., Disruption of vimentin cytoskeleton may play a role in heat shock response, in: Heat Shock: From Bacteria to Man, pp. 275–282. Eds M. Schlesinger, M. Ashburner and A. Tissières. Cold Spring Harbor Laboratory Press 1982.

  10. Buzin, C. H., and Bournias-Vardiabasis, N., Teratogens induce a subset of small heat shock proteins inDrosophila primary embryonic cell cultures. Proc. natl Acad. Sci. USA81 (1984) 4075–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chomyn, A., and Mitchell, H. K., Synthesis of the 84,000 dalton protein in normal and heat shockedDrosophila melanogaster cells as detected by specific antibody. Insect Biochem.12 (1982) 105–114.

    Article  CAS  Google Scholar 

  12. Clos, J., Westwood, J. T., Becker, P. B., Wilson, S., Lambert, K., and Wu, C., Molecular cloning and expression of a hexamericDrosophila heat shock factur subject to negative regulation. Cell63 (1990) 1085–1097.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, R. S., and Meselson, M., Inducible transcription and puffing inDrosophila melanogaster transformed with hsp70-phage λ hybrid heat shock genes. Proc. natl Acad. Sci. USA81 (1984) 5509–5513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen, R. S. and Meselson, M., Separate regulatory elements for the heat-inducible and ovarian expression of theDrosophila hsp26 gene. Cell43 (1985) 737–746.

    Article  CAS  PubMed  Google Scholar 

  15. Corces, V., Holmgren, R., Freund, R., Morimoto, R., and Meselson, M., Four heat shock proteins ofDrosophila melanogaster coded within a 12-kilobase region in chromosome, subdivision 67B. Proc. natl Acad. Sci. USA77 (1980) 5390–5393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Craig, E. A., and McCarthy, B. J., FourDrosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucl. Acids Res.8 (1980) 4441–4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S., The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels. Cell31 (1982) 593–603.

    Article  CAS  PubMed  Google Scholar 

  18. DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S., Heat shock and recovery are mediated by different translation mechanisms. Proc. natl Acad. Sci. USA79 (1982) 6181–6185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dudler, R., and Travers, A. A., Upstream elements necessary for optimal function of the hsp70 promoter in transformed flies. Cell38 (1984) 391–398.

    Article  CAS  PubMed  Google Scholar 

  20. Ellgaard, E. G., and Clever, U., RNA metabolism during puff induction inDrosophila melanogaster. Chromosoma36 (1971) 60–78.

    Article  CAS  PubMed  Google Scholar 

  21. Ellis, R. J., and van der Vies, S. M., Molecular chaperones. A. Rev. Biochem.60 (1991) 321–347.

    Article  CAS  Google Scholar 

  22. Glaser, R. L., Wolfner, M. F., and Lis, J. T., Spatial and temporal pattern of hsp26 expression during normal development. EMBO J.5 (1986) 747–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glaser, R. L., and Lis, J. T., Multiple, compensatory regulatory elements specify spermatocyte-specific expression of theDrosophila melanogaster hsp26 gene. Molec. cell Biol.10 (1990) 131–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gloor, H., Phanokopie-Versuche mit Äther anDrosophila. Rev. Suisse Zool.54 (1947) 637–712.

    Google Scholar 

  25. Glover, C. V. C., Heat-shock effects on protein phosphorylation inDrosophila, in: Heat Shock: From Bacteria to Man, pp. 227–234. Eds M. J. Schlesinger, M. Ashburner and A. Tissières. Cold Spring Harbor Laboratory Press 1982.

  26. Goldschmidt, R., Gen und Ausseneigenschaft. 1. (Untersuchung anDrosophila). Z. Indukt. Abstammungs Vererbungsl.69 (1935) 38–131.

    Google Scholar 

  27. Grunstein, M., Histone function in transcription. A. Rev. Cell Biol.6 (1990) 643–678.

    Article  CAS  Google Scholar 

  28. Hackett, R. W., and Lis, J. T., DNA sequence analysis reveals extensive homologies of regions preceding, hsp70 and αβ heat shock genes inDrosophila melanogaster. Proc. natl Acad. Sci. USA78 (1981) 6196–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hackett, R. W., and Lis, J. T., Localization of the hsp83 RNA within 3292 nucleotide sequence from the 63B heat shock locus ofD. melanogaster. Nucl. Acids Res.11 (1983) 7011–7030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hightower, L. E., Heat shock, stress proteins, chaperones and proteotoxicity. Cell66 (1991) 191–197.

    Article  CAS  PubMed  Google Scholar 

  31. Hiromi, Y., Okamoto, H., Gehring, W. J., and Hotta, Y., Gremline transformation withDrosophila mutant actin genes induces constitutive expression of heat shock genes. Cell44 (1986) 293–301.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman, E. P., Gerring, S. L., and Corces, V. G., The ovarian, ecdysterone, and heat-shock-responsive promoters of theDrosophila melanogaster hsp27 gene react very differently to perturbations of DNA sequence. Molec. cell Biol.7 (1987) 973–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmgren, R., Livak, K., Morimoto, R., Freund, R., and Meselson, M., Studies of cloned sequences from fourDrosophila heat shock loci. Cell18 (1979) 1359–1370.

    Article  CAS  PubMed  Google Scholar 

  34. Holmgren, R., Corces, V., Morimoto, R., Blackman, R., and Meselson M., Sequence homologies in the 5′ regions of fourDrosophila heat-shock genes. Proc. natl Acad. Sci. USA78 (1981) 3775–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hultmark, D., Klemenz, R., and Gehring, W., Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell44 (1986) 429–438.

    Article  CAS  PubMed  Google Scholar 

  36. Ingolia, T. D., and Craig, E. A., Four smallDrosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc. natl Acad. Sci. USA79 (1982) 2360–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ireland, R. C., Berger, E., Sirotkin, K., Yund, M. A., Osterbur, D., and Fristrom, J., Ecdysterone induces the transcription of four heatshock genes inDrosophila S3 cells and imaginal discs. Devl Biol.93 (1982) 498–507.

    Article  CAS  Google Scholar 

  38. Karch, F., Török, I., and Tissières A., Extensive regions of homology in front of the two hsp70 heat shock variant genes inDrosophila melanogaster. J. molec. Biol.148 (1981) 219–230.

    Article  CAS  PubMed  Google Scholar 

  39. Kellum, R., and Schedl, P., A position-effect assay for boundaries of higher order chromosomal domains. Cell64 (1991) 941–950.

    Article  CAS  PubMed  Google Scholar 

  40. Klemenz, R., Hultmark, D., and Gehring, W. J., Selective translation of heat shock mRNA inDrosophila melanogaster depends on sequence information in the leader. EMBO J.4 (1985) 2053–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kruger, C., and Benecke, B.-J., In vitro translation ofDrosophila heat shock and non-heat shock mRNAs in heterologous and homologous cell-free system. Cell23 (1981) 595–603.

    Article  CAS  PubMed  Google Scholar 

  42. Levinger, L., and Varshavsky, A., Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within theDrosophila genome. Cell.28 (1982) 375–385.

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, M., Helmsing, P.J., and Ashburner, M., Parallel changes in puffing activity and patterns of protein synthesis in salivary glands ofDrosophila. Proc. natl Acad. Sci. USA72 (1975) 3604–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindquist, S., Varying patterns of protein synthesis inDrosophila during heat shock: implications for regulation. Devl Biol.77 (1980) 463–479.

    Article  CAS  Google Scholar 

  45. Lindquist, S., and Craig, E. A., The heat-shock proteins. A. Rev. Genet.22 (1988) 631–677.

    Article  CAS  Google Scholar 

  46. Livak, K. T., Freund, R., Schweber, M., Wensink, P. C., and Meselson, M., Sequence organization and transcription of two heat shock loci inDrosophila. Proc. natl Acad. Sci. USA75 (1978) 5613–5617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maroto, F.G., and Sierra, J. M., Translational control in heatshockedDrosophila embryos. J. biol. Chem.263 (1988) 15720–15725.

    Article  CAS  PubMed  Google Scholar 

  48. Mason, P. J., Hall, L. M. C., and Gausz, J., The expression of heat shock genes during normal development inDrosophila melanogaster (heat shock/abundant transcripts/developmental regulation). Molec. gen. Genet.194 (1984) 73–78.

    Article  CAS  Google Scholar 

  49. McGarry, T. J., and Lindquist, S., The preferential translation ofDrosophila hsp70 mRNA requires sequences in the untranslated leader. Cell42 (1985) 903–911.

    Article  CAS  PubMed  Google Scholar 

  50. McKenzie, S. L., Henikoff, S., and Meselson M., Localization of RNA from heat-induced polysomes at puff sites inDrosophila melanogaster. Proc. natl Acad. Sci. USA72 (1975) 1117–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKenzie, S. L., and Meselson, M., Translation in vitro ofDrosophila heat-shock messages. J. molec. Biol.117 (1977) 279–283.

    Article  CAS  PubMed  Google Scholar 

  52. Mestril, R., Schiller, P., Amin, J., Klapper, H., Jayakumar, A., and Voellmy, R., Heat shock and ecdysterone activation ofDrosophila melanogaster hsp23 gene: a sequence element implied in development regulation. EMBO J.5 (1986) 1667–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mirault, M.-E., Goldschmidt-Clermont, M., Moran, L., Arrigo, A.-P., and Tissières, A., The effect of heat shock on gene expression inDrosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol.42 (1978) 819–827.

    Article  CAS  PubMed  Google Scholar 

  54. Mirault, M.-E., Southgate, R., and Delwart, E., Regulation of heat shock genes: a DNA sequence upstream ofDrosophila hsp 70 genes is essential for their induction in monkey cells. EMBO J.1 (1982) 1279–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miron, T., Vancompernolle, K., Vanderkerckhove, J., Wilchek, M., and Geiger, B., A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell Biol.114 (1991) 255–261.

    Article  CAS  PubMed  Google Scholar 

  56. Mitchell, H. K., and Lipps, L. S., Heat shock and phenocopy induction inDrosophila. Cell15 (1978) 907–918.

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell, H. K., and Petersen, N. S., Rapid changes in gene expression in differentiating tissues ofDrosophila. Devl Biol.85 (1981) 233–242.

    Article  CAS  Google Scholar 

  58. Mitchell, H. K., and Moller, G., Petersen, N. S., and Lipps-Sarmiento, L., Specific protection from phenocopy induction by heat shock. Dev. Genet.1 (1979) 181–192.

    Article  CAS  Google Scholar 

  59. Morimoto, R. I., Tissières, A., and Georgopoulos, G., (Eds) Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press. 1990.

  60. Nolan, N. L., and Kidwell, W.R., Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair inDrosophila cells. Radiat. Res.90 (1982) 187–203.

    Article  CAS  PubMed  Google Scholar 

  61. O'Connor, D., and Lis, J. T., Two closely linked transcription units within the 63B heat shock puff ofD. melanogaster display strikingly different regulation. Nucl. Acids Res.9 (1981) 5075–5092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parker, C. S., and Topol, J., ADrosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell37 (1984) 273–283.

    Article  CAS  PubMed  Google Scholar 

  63. Pauli, D., Spierer, A., and Tissières, A. Several hundred base pairs upstream ofDrosophila hsp23 and 26 genes are required for their heat induction in transformed flies. EMBO J.5 (1986) 755–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pauli, D., and Tonka, C.-H., ADrosophila heat shock gene from locus 67B is expressed during embryogenesis and pupation. J. molec. Biol.198 (1987) 235–240.

    Article  CAS  PubMed  Google Scholar 

  65. Pauli, D., Tonka, C.-H., Tissières, A., and Arrigo, A.-P., Tissuespecific expression of the heat shock protein hsp27 duringDrosophila melanogaster development. J. Cell Biol.111 (1990) 817–828.

    Article  CAS  PubMed  Google Scholar 

  66. Pelham, H. R. B., A regulatory upstream promoter element in theDrosophila hsp heat-shock gene. Cell30 (1982) 517–528.

    Article  CAS  PubMed  Google Scholar 

  67. Pelham, H. R. B., Hsp 70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J.3 (1984) 3095–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pelham, H. R. B., Speculations on the functions of the major heat shock and glucose regulated proteins. Cell46 (1986) 959–961.

    Article  CAS  PubMed  Google Scholar 

  69. Perisic, O., Xiao, H., and Lis, J., Stable binding ofDrosophila heat shock factor to head-to-tail and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell59 (1989) 797–806.

    Article  CAS  PubMed  Google Scholar 

  70. Perkins, L. A., Doctor, J. S. K., Stinson, L., Perrimon, N., and Craig, E. A., Molecular and development characterization of the heat shock cognate 4 gene ofDrosophila melanogaster. Molec. cell. Biol.10 (1990) 3232–3238.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Petersen, N. S., and Mitchell, H. K., Recovery of protein synthesis after heat shock: prior heat treatment affects the ability of cells to translate mRNA. Proc. natl Acad. Sci. USA78 (1981) 1708–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petersen, R., and Lindquist, S., TheDrosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene72 (1988) 161–168.

    Article  CAS  PubMed  Google Scholar 

  73. Petersen, R., and Lindquist, S., Regulation of hsp70 synthesis by messenger RNA degradation. Cell Reg.1 (1989) 135–149.

    Article  CAS  Google Scholar 

  74. Riddihough, G., and Pelham, H. R. B., An ecdysone response element in theDrosophila hsp27 promoter. EMBO J.6 (1987) 3729–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ritossa, F., A new puffing pattern induced by temperature shock and DNP inDrosophila. Experientia13 (1962) 571–573.

    Article  Google Scholar 

  76. Ritossa, F., New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes ofD. melanogaster. Drosophila Inf. Service37 (1963) 122–123.

    Google Scholar 

  77. Ritossa, F., Experimental activation of specific loci in polytene chromosomes ofDrosophila. Exp. Cell Res.35 (1964) 602–607.

    Article  Google Scholar 

  78. Ritossa, F., Behaviour of RNA and DNA synthesis at the puff level in salivary gland chromosomes ofDrosophila. Exp. Cell Res.36 (1964) 515–523.

    Article  CAS  PubMed  Google Scholar 

  79. Rubin, G. M., and Hogness, D. S., Effect of heat shock on the synthesis of low molecular weight RNAs inDrosophila: accumulation of a novel form of 5S RNA. Cell6 (1975) 207–213.

    Article  CAS  PubMed  Google Scholar 

  80. Sanders, M. M., Triemer, D. F., and Olsen, A. S., Regulation of protein synthesis in heat-shockedDrosophila cells: soluble factors control translation in vitro. J. biol. Chem.261 (1986) 2189–2196.

    Article  CAS  PubMed  Google Scholar 

  81. Schedl, P. S., Artavanis-Tsakonas, S., Steward, R., Gehring, W.J., Mirault, M.-E., Goldschmidt-Clermont, M., Moran, L., and Tissières, A., Two hybrid plasmids withDrosophila melanogaster DNA sequences complementary to mRNA coding for the major heat shock proteins Cell14 (1978) 921–929.

    Article  CAS  PubMed  Google Scholar 

  82. Simard, R., and Bernhard, W., A heat-sensitive cellular function located in the nucleolus. J. Cell Biol.34 (1967) 61–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Simon, J. A., Sutton, C. A., Lobell, R. B., Glaser, R. L., and Lis, J. T., Determinants of heat shock-induced chromosome puffing. Cell40 (1985) 805–817.

    Article  CAS  PubMed  Google Scholar 

  84. Sirotkin, K., and Davidson, N., Developmentally regulated transcription fromDrosophila melanogaster, chromosomal site 67B. Devl Biol.89 (1982) 196–210.

    Article  CAS  Google Scholar 

  85. Sorger, P. K., Heat shock factor and the heat shock response. Cell65 (1991) 363–366.

    Article  CAS  PubMed  Google Scholar 

  86. Sorger, P. K., and Pelham, H. R. B., Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature dependent phosphorylation. Cell54 (1988) 855–864.

    Article  CAS  PubMed  Google Scholar 

  87. Sorger, P. K., and Nelson, H. C. M., Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell59 (1989) 807–813.

    Article  CAS  PubMed  Google Scholar 

  88. Spradling, A. C., Pardue, M. L., and Penman, S., Messenger RNA in heat-shockedDrosophila cells. J. molec. Biol.109 (1977) 559–587.

    Article  CAS  PubMed  Google Scholar 

  89. Storti, R. V., Scott, M. P., Rich, A., and Pardue, M. L., Translational control of protein synthesis in response to heat shock inD. melanogaster cells. Cell22 (1980) 825–834.

    Article  CAS  PubMed  Google Scholar 

  90. Thomas, S. R., and Lengyel, J. A., Ecdysteroid-regulated heat-shock gene expression duringDrosophila melanogaster development. Devl Biol.115 (1986) 434–438.

    Article  CAS  Google Scholar 

  91. Tissières, A., Mitchell, H. K., and Tracy, V. M., Protein synthesis in salivary glands ofDrosophila melanogaster: relation to chromosome puffs. J. molec. Biol.84 (1974) 389–398.

    Article  PubMed  Google Scholar 

  92. Velazquez, J. M., and Lindquist, S., Hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell36 (1984) 655–662.

    Article  CAS  PubMed  Google Scholar 

  93. Voellmy, R., Goldschmidt-Clermont, M., Southgate, R., Tissières, A., Levis, R., and Gehring, W., A DNA segment isolated from chromosomal site 67B inD. melanogaster contains four closely linked heat-shock genes. Cell23 (1981) 261–270.

    Article  CAS  PubMed  Google Scholar 

  94. Webster, W. S., Germain, M. A., and Edwards, M. J., The induction of microphthalmia, encephalocele, and other heat defects following hyperthermia during the gastrulation process in the rat. Teratology31 (1985) 73–82.

    Article  CAS  PubMed  Google Scholar 

  95. Westwood, J. T., Clos, J., and Wu, C., Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature353 (1991) 822–827.

    Article  CAS  PubMed  Google Scholar 

  96. Wiederrecht G., Seto, D., and Parker, C. S., Isolation of the gene encoding theS. cerevisiae heat shock transcription factor. Cell54 (1988) 841–853.

    Article  CAS  PubMed  Google Scholar 

  97. Wu, C., Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature311 (1984) 81–84.

    Article  CAS  PubMed  Google Scholar 

  98. Wu, C., Wilson, S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., Purification and properties ofDrosophila heat shock activator protein. Science238 (1987) 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  99. Xiao, H., and Lis, J.T., Germ line transformation used to define key features of heat-shock response elements. Science239 (1988) 1139–1142.

    Article  CAS  PubMed  Google Scholar 

  100. Xiao, H., and Lis, J. T., Heat shock and developmental regulation of theDrosophila melanogaster hsp83 gene. Molec. cell Biol.9 (1989) 1746–1753.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao, H., Perisic, O., and Lis, J. T., Cooperative binding ofDrosophila heat shock factor to arrays of a conserved 5 bp unit. Cell64 (1991) 585–593.

    Article  CAS  PubMed  Google Scholar 

  102. Yost, H. J., and Lindquist, S., RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell45 (1986) 185–193.

    Article  CAS  PubMed  Google Scholar 

  103. Yost, H. J., and Lindquist, S., Translation of unspliced transcripts after heat shock. Science242 (1988) 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  104. Yost, H. J., Petersen, R. B., and Lindquist, S., Posttranscriptional regulation of heat shock protein synthesis inDrosophila, in: Stress Proteins in Biology and Medicine, pp. 379–409. Eds R. I. Morimoto, A. Tissières and G. Georgopoulos. Cold Spring Harbor Laboratory Press 1990.

  105. Zimarino, V., and Wu, C., Induction of sequence specific binding ofDrosophila heat shock activator protein without protein synthesis. Nature327 (1987) 727–730.

    Article  CAS  PubMed  Google Scholar 

  106. Zimmerman, J. L., Petri, W., and Meselson, M., Accumulation of a specific subset ofD. melanogaster heat shock mRNAs in normal development without heat shock. Cell32 (1983) 1161–1170.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauli, D., Arrigo, A.P. & Tissières, A. Heat shock response in Drosophila. Experientia 48, 623–629 (1992). https://doi.org/10.1007/BF02118306

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118306

Key words

Navigation