Skip to main content
Log in

A new method for calculating evolutionary substitution rates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

In this paper we present a new method for analysing molecular evolution in homologous genes based on a general stationary Markov process. The elaborate statistical analysis necessary to apply the method effectively has been performed using Monte Carlo technqiues. We have applied our method to the silent third position of the codon of the five mitochondrial genes coding for identified proteins of four mammalian species (rat, mouse, cow and man). We found that the method applies satisfactorily to the three former species, while the last appears to be outside the scope of the present approach. The method allows one to calculate the evolutionarily effective silent substitution rate (vs) for mitochondrial genes, which in the species mentioned above is 1.4×10−8 nucleotide substitutions per site per year. We have also determined the divergence time ratios between the couples mousecow/rat-mouse and rat-cow/rat-mouse. In both cases this value is approximately 1.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B:

cow

H:

human

M:

mouse

MY:

million years

R:

rat

References

  • Anderson S, Bankier AT, Barrell GB, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464

    PubMed  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. J Mol Biol 156:683–717

    PubMed  Google Scholar 

  • Bibb MJ, va Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    PubMed  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  Google Scholar 

  • Cantatore P, De Benedetto C, Gadaleta G, Gallerani R, Kroon AM, Holtrop M, Lanave C, Pope G, Quagliariello C, Sacone C, Sbisà E (1982) The nucleotide sequences of several tRNA genes from rat mitochondria: common features and relatedness to homologous species. Nucleic Acids Res 10:3279–3289

    PubMed  Google Scholar 

  • Gojobori T, Ishii K, Nei M (1982) Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. J Mol Evol 18:414–423

    PubMed  Google Scholar 

  • Grosskopf R, Feldman H (1981) Analysis of a DNA segment from rat liver mitochondria containing the genes for the cytochrome oxidase subunits I, I and III, ATPase subunit 6 and several tRNA genes. Curr Genet 4:151–158

    Google Scholar 

  • Grunstein M, Schede P, Kedes L (1976) Sequence analysis and evolution of sea urchin (Lytechnius pictus andStrongylocentrotus purpuratus) histoneH4 messenger RNAs. J Mol Biol 104:351–369

    PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism, Vol III. Academic Press, New York, pp 21–132

    Google Scholar 

  • Jukes TH (1980) Silent nucleotide substitutions and the molecular evolutionary clock. Science 210:973–978

    PubMed  Google Scholar 

  • Kimura M (1977) Predominance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    PubMed  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458

    PubMed  Google Scholar 

  • Kabayashi M, Seki T, Yaginuma K, Koike K (1981) Nucleotide sequences of small ribosomal RNA and adiacent transfer RNA genes in rat mitochondrial DNA. Gene 16:297–307

    PubMed  Google Scholar 

  • Koike K, Kobayashi M, Yaginuma K, Taira M, Yoshida E, Imai M (1982) Nucleotide sequence and evolution of the rat mitochondrial cytochrone b gene containing theochre termination codon. Gene 20:177–185

    PubMed  Google Scholar 

  • Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci USA 77:7328–7332

    PubMed  Google Scholar 

  • Pepe G, Holtrop M, Gadaleta G, Kroon AM, Cantatore P, Gallerani R, De Benedetto C, Quagliariello C, Sibisà E, Saccone C (1983) Non-random patterns of nucleotide substitutions and codon strategy in the mammalian mitochondrial genes coding for identified and unidentified reading frames. Biochem Intern 6:553–563

    Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolonder R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    PubMed  Google Scholar 

  • Saccone C, Cantatore P, Gadaleta G, Gallerani R, Lanave C, Pepe G, Kroon AM (1981) The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucleic Acids Res 9:4139–4148

    PubMed  Google Scholar 

  • Saccone C, De Benedetto C, Gadaleta G, Lanave C, Pepe G, Sbisà E, Cantatore P, Gallerani R, Quagliariello C, Holtrop M, Kroon AM (1983) Studies on the evolutionary history of the mammalian mitochondrial genome. In: Nagley P, Linnane AW, Peacock WJ, Pateman JA (eds) Manipulation and Expression of Genes in Eukaryotes. Academic Press, Sydney, pp 325–332

    Google Scholar 

  • Salser W, Bowen S, Browne D, Eladli F, Fedoroff N, Fry K, Heindell H, Paddock G, Poon R, Wallace B, Whitcome R (1976) Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc 35:23–35

    PubMed  Google Scholar 

  • Sekiya T, Kobayashi M, Seki T, Koike K (1980) Nucleotide sequence of a cloned fragment of rat mitochondrial DNA containing the replication origin. Gene 11:53–62

    PubMed  Google Scholar 

  • Takahata N, Kimura M (1981) A model of evolutionary base substitutions and its applications with special reference to rapid change of pseudogenes. Genetics 98:641–657

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanave, C., Preparata, G., Sacone, C. et al. A new method for calculating evolutionary substitution rates. J Mol Evol 20, 86–93 (1984). https://doi.org/10.1007/BF02101990

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101990

Key words

Navigation