Skip to main content
Log in

Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Summary

Fetal alcohol exposure has multiple deleterious effects on brain development, and represents a leading known cause of mental retardation. This review of the effects of alcohol exposure on the developing brain evaluates results from human, animal andin vitro studies, but focuses on key research issues, including possible mechanisms of damage. Factors that affect the risk and severity of fetal alcohol damage also are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel, E.L. (1984). Mechanisms of action.Fetal Alcohol Syndrome and Fetal Alcohol Effects, Plenum Press, New York, pp. 207–212.

    Google Scholar 

  • Abel, E.L. (1985). Prenatal effects of alcohol on growth: a brief overview.FASEB 44: 2318–2321.

    CAS  Google Scholar 

  • Abel, E.L. (1989). Paternal alcohol consumption: effects of age of testing and duration of paternal drinking in mice.Teratology 40: 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Abel, E.L. (1994). Effects of physiostigmine on male offspring sired by alcohol-treated fathers.Alcoholism: Clin. Exp. Res. 18: 648–652.

    Article  CAS  Google Scholar 

  • Abel, E.L. and Sokol, R.J. (1987). Incidence of fetal alcohol syndrome and economic impact of FAS-related anomalies.Drug Alcohol Depend. 19: 51–70.

    Article  CAS  PubMed  Google Scholar 

  • Abel, E.L., and Sokol, R.J. (1991). A revised conservative estimate of the incidence of FAS and its economic impact.Alcoholism: Clin. Exp. Res. 15: 514–524.

    Article  CAS  Google Scholar 

  • Altura, B.M. (1986). Symposium on vitamins, minerals, and alcohol: Introduction and Overview.Alcoholism: Clin. Exp. Res. 10: 570–572.

    Article  Google Scholar 

  • Altura, B.M., Altura, B.T., Carella, A., Halevy, S., and Tejani, N. (1983). Alcohol produces spasms of human umbilical blood vessels: Relationship to fetal alcohol syndrome (FAS).Eur. J. Pharmacol. 86: 311–312.

    Article  Google Scholar 

  • Amankwah, K.S., and Kaufmann, R.C. (1984). Ultrastructure of human placenta: Effects of maternal drinking.Gynecol. Obstet. Invest. 18: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Anbar, M., and Neta, P.A. (1967). A complication of specific bimolecular rate constants for the reation of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution.Int. J. Appl. Rad. Isot. 18: 493–523.

    Article  CAS  Google Scholar 

  • Anson, J.F., Laborde, J.B., Pipkin, J.L., Hinson, W.G., Hansen, D.K., Sheehan, D.M., and Young, J.F. (1991). Target tissue specificity of retinoic acid-induced stress proteins and malformations in mice.Teratology 44: 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Assadi, F.K., and Ziai, M. (1986). Zinc status of infants with fetal alcohol syndrome.Pediatr. Res. 20: 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Auer, R.N., Jensen, M.L., and Whishaw, I.Q. (1989). Neurobehavioral deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus.J. Neurosci. 9: 1641–1647.

    CAS  PubMed  Google Scholar 

  • Barnes, D.E., and Walker, D.W. (1981). Prenatal alcohol exposure permanently reduces the number of pyramidal neurons in the rat hippocampus.Dev. Brain Res. 1: 333–340.

    Article  CAS  Google Scholar 

  • Barnes, D.M. (1989). New brain effects for alcohol.J. NIH Res. 1: 72–75.

    Google Scholar 

  • Bauer-Moffett, C., and Altman, J. (1977). The effect of alcohol chronically administered to preweanling rats on cerebellar development: a morphological study.Brain Res. 119: 249–268.

    Article  CAS  PubMed  Google Scholar 

  • Becker, H.C., and Anton, R.F. (1990). Valproate potentiates and picrotoxin antagonizes the anxiolytic action of ethanol in a nonshock conflict task.Neuropharmacol. 29: 837–843.

    Article  CAS  Google Scholar 

  • Blanchard, B.A., Steindorf, S., Wang, S. and Glick, S.D. (1993a). Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats.Alcoholism: Clin. Exp. Res. 17: 968–973.

    Article  CAS  Google Scholar 

  • Blanchard, B.A., Steindorf, S., Wang, S., LeFevre, R., Mankes, R.F. and Glick, S.D. (1993b). Prenatal ethanol exposure alters ethanol-induced dopamine release in nucleus accumbens and striatum in male and female rats.Alcoholism: Clin. Exp. Res. 17: 974–981.

    Article  CAS  Google Scholar 

  • Bonthius, D.J., and West, J.R. (1989). Aspirin augments alcohol in restricting brain growth in the neonatal rat.Neurotoxicol. Teratol. 11: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Bonthius, D.J., and West, J.R. (1990). Alcohol-induced neuronal loss in developing rats: increased brain damage with binge exposure.Alcoholism: Clin. Exp. Res. 14: 107–118.

    Article  CAS  Google Scholar 

  • Bonthius, D.J., and West, J.R. (1991a). Acute and long-term neuronal deficits in the rat olfactory bulb following alcohol exposure during the brain growth spurt.Neurotoxicol. Teratol. 13: 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Bonthius, D.J., and West, J.R. (1991b). Permanent neuronal deficits in rats exposed to alcohol during the brain growth spurt.Teratology 44: 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Brautbar, N., and Altura, B.M. (1987) Hypophosphatemia and hypomagnesemia result in cardiovascular dysfunction: Theoretical basis for alcohol-induced cellular injury.Alcoholism: Clin. Exp. Res. 11: 118–126.

    Article  CAS  Google Scholar 

  • Brierley, J.B., and Graham, D.I. (1984). Hypoxia and vascular disorders of the central nervous system. In: Adams, J. H., Corsellis, J. A. N., and Duchen, L. W. (eds.),Greenfield's Neuropathology, Fourth Edition, John Wiley & Sons, New York, pp. 125–207.

    Google Scholar 

  • Bronsky, P. T., Johnston, M. C., and Sulik, K. K. (1986). Morphogenesis of hypoxia-induced cleft lip in CL/Fr mice.J. Craniofac. Genet. Dev. Biol. (Suppl.) 2: 113–128.

    CAS  Google Scholar 

  • Brown, R.T., Coles, C.D., Smith, I.E., Platzman, K.A., Silverstein, J., Erickson, S., and Falek, A. (1991). Effects of prenatal alcohol exposure at school age: II. Attention and behavior.Neurotoxicol. Teratol. 13: 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Bulterys, M.G., Greenland, S., and Kraus, J.F. (1990). Chronic fetal hypoxia and sudden infant death syndrome: Interaction between maternal smoking and low hematocrit during pregnancy.Pediatr. 86: 535–540.

    CAS  Google Scholar 

  • Bustos, G., and Roth, R.H. (1976). Effect of acute ethanol treatment on transmitter synthesis and metabolism in central dopaminergic neurons.J. Pharm. Pharmacol. 28: 580–582.

    CAS  PubMed  Google Scholar 

  • Campbell, M.A., and Fantel, A.G. (1983). Teratogenicity of acetaldehydein vitro: relevance to the fetal alcohol syndrome.Life Sci. 32: 2641–2647.

    Article  CAS  PubMed  Google Scholar 

  • Cassells, B.P., Wainwright, P.E., and Blom, K. (1987). Heredity and alcohol-induced brain anomalies: effects of alcohol on anomalous prenatal development of the corpus callosum and anterior commissure in BALB/c and C57BL/6 mice.Exp. Neurol. 95: 587–604.

    Article  CAS  PubMed  Google Scholar 

  • Cedar, H. (1988). DNA methylation and gene activity.Cell 53: 3–4.

    Article  CAS  PubMed  Google Scholar 

  • Cederbaum, A.I. (1989). Oxygen radical generation by microsomes: Role of iron and implications for alcohol metabolism and toxicity.Free Rad. Biol. Med. 7: 559–567.

    Article  CAS  PubMed  Google Scholar 

  • Cederbaum, A.I., and Cohen, G. (1984). Microsomal oxidant radical production and ethanol oxidation.Meth. Enzymol. 105: 516–522.

    Article  CAS  PubMed  Google Scholar 

  • Chafetz, M.D. (1990).Nutrition and Neurotransmitters: The Nutrient Bases of Behavior, Prentice-Hall Englewood Cliffs, NJ.

    Google Scholar 

  • Chanarin, I. (1986). Folate Deficiency. In Blakley, R. L. and Whitehead, V. M. (eds.),Folates and Pterins, Vol. 3, Nutritional, Pharmacological and Physiological Aspects, John-Wiley & Sons, New York, pp. 75–146.

    Google Scholar 

  • Charness, M.E., Querimit, L.A., and Henteleff, M. (1988). Ethanol differentially regulates G proteins in neural cells.Biochem. Biophys. Res. Commun. 155: 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Chasnoff, I.J. (1985). Fetal alcohol syndrome in twin pregnancies.Acta Genet. Med. Gemellol. (Roma) 34: 229–232.

    CAS  Google Scholar 

  • Chen, W.-J., McAlhany, R.E., Jr., and West, J.R. (1994). Alcohol dehydrogenase inhibitor, 4-methylpyrazole, augments ethanol-induced microencephaly in neonatal rats.Alcoholism: Clin. Exp. Res. 18: 436.

    Article  Google Scholar 

  • Chernoff, G.F. (1980). The fetal alcohol syndrome in mice: an animal model.Teratology 15: 223–230.

    Article  Google Scholar 

  • Chiappelli, F., Wong, C., Yirmiya, R., Norman, D., Chang, M.P., and Taylor, A. N. (1993). Fetal alcohol exposure and neuroimmune serveillance. In:Alcohol, Immunity and Cancer. Yirmiya, R., and Taylor, A. N. (eds.), Boca Raton, FL, CRC Press, pp. 143–156.

    Google Scholar 

  • Chin, J.H., and Goldstein, D.B. (1977). Effects of low concentrations of alcohol on the fluidity of spin-labeled erythrocyte and brain membranes.Mol. Pharmacol. 13: 435–441.

    CAS  PubMed  Google Scholar 

  • Chin, J.H. and Goldstein, D.B. (1981). Membrane-disordering action of alcohol: variation with membrane cholesterol content and depth of spin label probe.Molec. Pharmacol. 19: 425–431.

    CAS  Google Scholar 

  • Christoffel, K.K., and Salafsky, I. (1975). Fetal alcohol syndrome in dizygotic twins.J. Pediatr. 87: 963–967.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, D.-M., Gao, X.-M., and Paul, S.M. (1992). N-Methyl-D-Aspartate exposure blockes glutamate toxicity in cultured cerebellar granular cells.Mol. Pharmacol. 42: 210–216.

    CAS  PubMed  Google Scholar 

  • Church, M.W., and Gerkin, K.P. (1988). Hearing disorders in children with fetal alcohol syndrome: findings from case reports.Pediatrics 82: 147–154.

    CAS  PubMed  Google Scholar 

  • Clarren, S.K., and Smith, D.W. (1978). The fetal alcohol syndrome.N. Eng. J. Med. 298: 1063–1067.

    Article  CAS  Google Scholar 

  • Clarren, S.K., Alvord, E.C., Jr., Sumi, S.M., Streissguth, A.P., and Smith, D.W. (1978). Brain malformations related to prenatal exposure to alcohol.J. Pediatr. 92: 64–67.

    Article  CAS  PubMed  Google Scholar 

  • Cohan, C.S., Connor, J.A., and Kater, S.B. (1987). Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones.J. Neurosci. 7: 3588–3599.

    CAS  PubMed  Google Scholar 

  • Cohen, G., and Cederbaum, A.I. (1980). Microsomal metabolism of hydroxyl radical scavenging agents: Relationship to the microsomal oxidation of alcohols.Arch. Biochem. Biophys. 199: 438–447.

    Article  CAS  PubMed  Google Scholar 

  • Colliver, J.D., and Kopstein, A.N. (1991). Trends in cocaine abuse reflected in emergency room episodes reported to DAWN.Public Health Reports,106: 59–67.

    CAS  PubMed  Google Scholar 

  • Colman, N., and Herbert V. (1986). Folates and the nervous system. In Blakley, R. L. and Whitehead, V. M. (eds.),Folates and Pterins, Vol. 3, Nutritional, Pharmacological and Physiological Aspects. John-Wiley & Sons, New York, pp. 339–357.

    Google Scholar 

  • Connor, J. A. (1986). Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells.Proc. Natl. Acad. Sci. 83: 6179–6183.

    Article  CAS  PubMed  Google Scholar 

  • Conry, J. (1990). Neuropsychological deficits in fetal alcohol syndrome and fetal alcohol effects.Alcoholism: Clin. Exp. Res. 14: 650–655.

    Article  CAS  Google Scholar 

  • Dakshinamurti, K., Paulose, C. S., and Siow, Y. L. (1985). Neurobiology of Pyridoxine. In Reynolds, R. D. and Leklem, J. E. (eds.),Vitamin B-6: Its Role in Health and Disease. Alan R. Liss, Inc., New York, pp. 99–121.

    Google Scholar 

  • Daniell, L.C., Brass, E. P., and Harris, R. A. (1987). Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes.Mol. Pharmacol. 32: 831–837.

    CAS  PubMed  Google Scholar 

  • Dar, M. S., and Wooles, W. R. (1984). The effect of acute ethanol on dopamine metabolism in the striatum of mice.J. Neural Tramsmission 60: 283–294.

    Article  CAS  Google Scholar 

  • Davies, D. L. (1992). The responses of astrocytes to alcohol exposure. InAlcohol and Neurobiology, Watson, R. R. (ed.), CRC Press, Boca Raton, FL. pp. 69–81.

    Google Scholar 

  • Davis, S. D., Nelson, T., and Shepard, T. H. (1970). Teratogenicity of vitamin B6 deficiency: omphalocele, skeletal and neural defects, and splenic hypoplasia.Science 169: 1329–1330.

    Article  CAS  PubMed  Google Scholar 

  • Day, N. L., Robles, N., Richardson, G., Geva, D., Taylor, P., Scher, M.et al. (1991). The effects of prenatal alcohol use on the growth of children at three years of age.Alcoholism: Clin. Exp. Res. 15: 67–71.

    Article  Google Scholar 

  • Del Villano, B.C., Tischfield, J.A., Schacter, L.P., Stilwil, D., and Miller, S.I. (1979). Cupro-zinc superoxide dismutase: A possible biologic marker for alcoholism (Studies in black patients).Alcoholism: Clin. Exp. Res. 3: 291–296.

    Article  Google Scholar 

  • DiChiara, G., and Imperato, A. (1985). Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats.Eur. J. Pharmacol. 115: 131–132.

    Article  CAS  Google Scholar 

  • Dildy, J.E., and Leslie, S.W. (1989). Ethanol inhibits NMDA-induced increases in free intracellular CA2+ in dissociated brain cells.Brain Res. 499: 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Dobbing, J., and Sands, J. (1973). The quantitative growth and development of the human brain.Arch. Dis. Child. 48: 757–767.

    Article  CAS  PubMed  Google Scholar 

  • Dobbing, J. and Sands, J. (1979). Comparative aspects of the brain growth spurt.Early Hum. Develop. 3: 79–83.

    Article  CAS  Google Scholar 

  • Dohrman, D.P. (1993). Potential mechanisms of alcohol-induced neuronal loss. Unpublished Ph.D. Dissertation. University of Iowa.

  • Dohrman, D.P., Goodlett, C.R., West, J.R., and Pantazis, N.J. (1992). Alcohol reduces nerve growth factor receptor immunoreactivity in neonatal cerebellum.Soc. Neurosci. Abstr.,18: 1600.

    Google Scholar 

  • Dow, K.E., and Riopelle, R.J. (1985). Ethanol neurotoxicity: Effects on neurite formation and neurotrophic factor productionin vitro.Science 228: 591–593.

    Article  CAS  PubMed  Google Scholar 

  • Dreosti, I. E. (1986). Zinc-alcohol interactions in brain development. In West, J. R. (ed.).Alcohol and Brain Development, Oxford University Press, New York, pp. 373–405.

    Google Scholar 

  • Duester, G. (1991a). A hypothetical mechanism for fetal alcohol syndrome involving alcohol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step.Alcoholism: Clin. Exp. Res. 15: 568–572.

    Article  CAS  Google Scholar 

  • Duester, G. (1991b). Human liver alcohol dehydrogenase gene expression: Retinoic acid hemeostasis and fetal alcohol syndrome. In Watson, R.R. (ed.).Drug and Alcohol Abuse Reviews, Vol. 2: Liver Pathology, Humana Press, Clifton, NJ, pp. 375–402.

    Google Scholar 

  • Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendriks, H. F. J., de Vries, N. J., Heideveld, M., and Nieuwkoop, P. D. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system.Nature 340: 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Ernhart, C. B., Morrow-Tlucat, M., Sokol, R. J., and Martier, S. (1988). Underreporting of alcohol use in pregnancy.Alcoholism: Clin. Exp. Res. 12: 506–511.

    Article  CAS  Google Scholar 

  • Eriksson, C.J.P. (1980). Problems and pitfalls in acetaldehyde determinations.Alcoholism: Clin. Exp. Res. 4: 22–29.

    Article  CAS  Google Scholar 

  • Espina, N., Lima, V., Lieber, C.S., and Garro, A.J. (1988).In vitro andin vivo inhibitory effect of ethanol and acetaldehyde on O6 methylguanine transferase.Carcinogenesis 9: 761–766.

    Article  CAS  PubMed  Google Scholar 

  • Fadda, F., Mosca, E., Colombo, G, and Gessa G.L. (1989). Effects of spontaneous ingestion of ethanol on brain dopamine metabolism.Life Sci. 44: 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Feinman, L., and Lieber, C. S. (1992). Nutrition: Medical problems of alcoholism. In Lieber, C. S. (ed.),Medical and Nutritional Complications of Alcoholism: Mechanisms and Management. Plenum Medical Book Company, New York. pp. 515–530.

    Google Scholar 

  • Fere, C. H. (1895). Etudes experimentales sur l'influence teratogene ou degenerative des alcools et des essences.J. Anat. Physiol. (Paris),31:161–186.

    Google Scholar 

  • Ferrer, I., and Galofré, E. (1987). Dendritic spine anomalies in fetal alcohol syndrome.Neuropediatrics 18:161–163.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, S..E., Atkinson, M.S., Burnap, J.P., Jacobson, S., Sehgal, P.K., Scott, W., and Van Thiel, D.H. (1982). Ethanol-associated selective fetal malnutrition: A contributing factor in the fetal alcohol syndrome.Alcoholism: Clin. Exp. Res. 6:197–201.

    Article  CAS  Google Scholar 

  • Flink, E.B. (1986). Magnesium deficiency in alcoholism.Alcoholism: Clin. Exp. Res. 10:590–594.

    Article  CAS  Google Scholar 

  • Flynn, A., Martier, S.S., Sokol, R.J., Golden, N.L., and Del Villano, B.C. (1981). Zinc status of pregnant alcoholic women: a determinant of fetal outcome.Lancet 1: 572–574.

    Article  CAS  PubMed  Google Scholar 

  • French, S.W. (1966). Effect of chronic alcohol ingestion on liver enzyme changes induced by thiamine, riboflavin, pyridoxine, or choline deficiency.J. Nutr. 88: 291–302.

    CAS  PubMed  Google Scholar 

  • Fridovich, I. (1989). Oxygen radicals from acetaldehyde.Free Rad. Biol. Med. 7: 557–558.

    Article  CAS  PubMed  Google Scholar 

  • Garro, A.J., McBeth, D.L., Lima, V., and Lieber, C.S. (1991). Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome.Alcoholism: Clin. Exp. Res. 15: 395–398.

    Article  CAS  Google Scholar 

  • George, C.P., Goldberg, M.P., Choi, D.W., and Steinberg, G.K. (1988). Dextromethorphan reduces neocortical ischemic neuronal damagein vivo.Brain Res. 440: 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Ghishan, F.K., Putwardhan, R., and Greene, H.L. (1982). Fetal alcohol syndrome: Inhibition of placental zinc transport as a potential mechanism for fetal growth retardation in the rat.J. Lab. Clin. Med. 100: 45–52.

    CAS  PubMed  Google Scholar 

  • Gilbert, S.F. (1988).Developmental Biology, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Gilliam, D.M., Stilman, A., Dudek, B.C., and Riley, E.P. (1987). Fetal alcohol effects in long- and short-sleep mice: Activity, passive avoidance, andin utero alcohol levels.Neurotoxicol. Teratol. 9: 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D.B. (1981).Pharmacology of Alcohol. Oxford University Press, New York.

    Google Scholar 

  • Goldstein, D.B., Chin, J.H., and Lyon, R.C. (1982). Ethanol disordering of spin-labelled mouse brain membranes: Correlation with genetically-determined alcohol sensitivity of mice.Proceedings of the National Academy of Sciences, USA.79: 4231–4233.

    Article  CAS  Google Scholar 

  • Goodlett, C. R., Bonthius, D. J., Wasserman, E. A., and West, J. R. (1992). An animal model of central nervous system dysfunction associated with fetal alcohol exposure: Behavioral and neuroanatomical correlates. In:Learning and Memory: Behavioral and Biological Processes. I. Gormezano, I., and Wasserman, E. A. (eds.), Englewood, NJ, Lawrence Erlbaum, pp. 183–208.

    Google Scholar 

  • Goodlett, C.R., Gilliam, D.M., Nichols, J.M., and West, J.R. (1989a). Genetic influences on brain growth restriction induced by developmental exposure to alcohol.NeuroToxicology,10: 321–334.

    CAS  PubMed  Google Scholar 

  • Goodlett, C.R., Kelly, S.J., and West, J.R. (1987). Early postnatal alcohol exposure that produces high blood alcohol levels impairs development of spatial learning.Psychobiology 15: 64–74.

    CAS  Google Scholar 

  • Goodlett, C. R., Leo, J. T., O'Callaghan, J. P, Mahoney, J. C., and West, J. R. (1993). Astrogliosis induced by alcohol exposure during the brain growth spurt.Develop. Brain Res. 72: 85–97.

    Article  CAS  Google Scholar 

  • Goodlett, C. R., Marcussen, B. L., and West, J. R. (1990). A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss.Alcohol 7: 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Goodlett, C. R., Nichols, J. M., and West, J. R. (1989b). Genetic influences on alcohol-induced brain growth restriction: comparisons of inbred strains of rats exposed to alcohol during the neonatal brain growth spurt.Alcoholism: Clin. Exp. Res. 13: 322.

    Google Scholar 

  • Goodlett, C.R., Thomas, J.D., and West, J.R. (1991). Long-term deficits in cerebellar growth and rotarod performance of rats following “binge-like” alcohol exposure during the neonatal brain growth spurt.Neurotoxicol. Teratol. 13: 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, A.S., Collier, K., and Diamond, I. (1986). Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: An in vitro model of cellular tolerance to ethanol.Proc. Natl. Acad. Sci. (USA) 83: 2105–2108.

    Article  CAS  Google Scholar 

  • Gottesfeld, Z. (1993). Neuroimmune effects of prenatal and early postnatal alcohol. In:Alcohol, Immunity and Cancer. Yirmiya, R., and Taylor, A. N. (eds.), Boca Raton, FL, CRC Press, pp. 133–141.

    Google Scholar 

  • Grant, K.A., Valverius, P., Hudspith, M., and Tabakoff, B. (1990). Ethanol withdrawal seizures and the NMDA receptor complex.Eur. J. Pharmacol. 176: 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, D.A., Cooper, E.C., Gordon, A., and Diamond, I., (1984). Ethanol and the γ-aminobutyric acid-benzodiazepine receptor complex.J. Neurochem. 42: 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  • Grummer, M. A., Langhough, R. E., and Zachman, R. D. (1993). Maternal ethanol ingestion effects on fetal rat brain vitamin A as a model for fetal alcohol syndrome.Alcoholism: Clin. Exp. Res.,17: 592–597.

    Article  CAS  Google Scholar 

  • Grummer, M.A., and Zachman, R.D. (1990). The effect of maternal alcohol ingestion on fetal vitamin A in the rat.Pediatr. Res. 28: 1867–1891.

    Article  Google Scholar 

  • Halas, E.S., Eberhardt, M.J., Diers, M.A., and Sandstead, H.H. (1983). Learning and memory impairment in adult rats due to severe zinc deficiency during lactation.Physiol. Behav. 30: 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Halsted, C.H. (1992). Folate metabolism in alcoholism. In Watson, R.R. and Watzl, B. (eds.),Nutrition and Alcohol. CRC Press, Inc., Boca Raton, FL, pp. 255–267

    Google Scholar 

  • Hammer, R.P., Jr., and Scheibel, A.B. (1981). Morphologic evidence for a delay of neuronal maturation in fetal alcohol exposure.Exp. Neurol. 74: 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Hamre, K.M., and West, J.R. (1993). The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles.Alcoholism: Clin. Exp. Res. 17: 610–622.

    Article  CAS  Google Scholar 

  • Hanson, J.W., Streissguth, A.P., and Smith, D.W. (1978). The effects of moderate alcohol consumption during pregnancy on fetal growth and morphogenesis.J. Pediatr. 92: 457–460.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, H. M., and Fridovich, I. (dy1980). Superoxide dismutase: Detoxication of a free radical. In Jakoby, W.B. (ed.), Enzymatic Basis of Detoxication. Vol. 1, pp. 311-332.

  • Hearn, W.L., Rose, S., Wagner, J., Ciarleglio, A., and Mash, D.C. (1991). Cocaethylene is more potent than cocaine in mediating lethality.Pharmacol. Biochem. Behav. 39: 531–533.

    Article  CAS  PubMed  Google Scholar 

  • Heaton, M.B., Paiva, M., Swanson, D.J., and Walker, D.W. (1993). Modulation of ethanol neurotoxicity by nerve growth factor.Brain Res. 620: 78–85.

    Article  CAS  PubMed  Google Scholar 

  • Heaton, M.B., Swanson, D.J., Paiva, M. and Walker, D.W. (1992). Ethanol exposure affects trophic factor activity and responsiveness in chick embryo.Alcohol 9: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx, A.G., and Hummler, H. (1992). Teratogenicity of all-trans retinoic acid during early embryonic development in the cynomolgus monkey (Macaca fascicularis).Teratology 45: 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Henneberry, R.C. (1992). Cloning of the genes for excitatory amino acid receptors.BioEssays 14: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Higashi, K., and Hoek, J.B. (1991). Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes.J. Biol. Chem. 266: 2178–2190.

    CAS  PubMed  Google Scholar 

  • Higuchi, Y., and Matsumoto, N. (1984). Embryotoxicity of alcohol and acetaldehyde: direct effects of mouse embryoin vitro.Cong. Anom. 24: 9–28.

    Article  CAS  Google Scholar 

  • Hinko, C.N., and Rozanov, C. (1990). The role of bicuculline, aminooxayacetic acid and gabaculine in the regulation of ethanol-induced motor impairment.Eur. J. Pharmacol. 182: 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Hoek, J.B., and Taraschi, T.F. (1988). Cellular adaptation to alcohol.TIBS.13: 269–274.

    CAS  PubMed  Google Scholar 

  • Hoek, J.B, Thomas, A.P., Rubin, R., and Rubin, E. (1987). Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes.J. Biol. Chem. 262: 682–691.

    CAS  PubMed  Google Scholar 

  • Hoffman, P.L., Moses, F., and Tabakoff, B. (1989a). Selective inhibition by ethanol of glutamate-stimulated cyclic GMP production in primary cultures of cerebellar granule cells.Neuropharmacology 28: 1239–1243.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, P.L., Rabe, C.S., Moses, F., and Tabakoff, B. (1989b). NMDA receptors and ethanol: inhibition of calcium flux and cyclic-GMP production.J. Neurochem. 52: 1937–1940.

    Article  CAS  PubMed  Google Scholar 

  • Holliday, R. (1987). The inheritance of epigenetic defects.Science 238: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi, T., Suzuki, K., Comas-Urrutia, A.C., Mueller-Heubach, E., Boyer-Milic, A.M., Baratz, R.A.et al. (1971). Effect of alcohol upon uterine activity and fetal acid-base state in the rhesus monkey.Am. J. Obstet. Gynecol. 109: 910–917.

    CAS  PubMed  Google Scholar 

  • Horrobin, D.F. (1980). A biochemical basis for alcoholism and alcohol-induced damage including the fetal alcohol syndrome and cirrhosis: Interference with essential fatty acid and prostaglandin metabolism.Med. Hypotheses 6: 929–942.

    Article  CAS  PubMed  Google Scholar 

  • Hoyumpa, A.M. (1986). Mechanisms of vitamin deficiencies in alcoholism.Alcoholism: Clin. Exp. Res. 10: 573–581.

    Article  CAS  Google Scholar 

  • Hungund, B.L., Gokhale, V.S., Cooper, T.B., and Mahadik, S.P. (1991). Prenatal ganglioside GMI treatment protects alcohol-induced sleep time in rats exposed to alcohol in utero during gestation days 7 and 8.Drug Dev. Res. 24: 261–267.

    Article  CAS  Google Scholar 

  • Hungund, B.L., and Mahadik, S.P. (1988). Ganglioside GMI antagonizes functional impairment induced by acute alcohol treatment in mice.Alcoholism: Clin. Exp. Res. 12: 313.

    Google Scholar 

  • Hungund, B.L., and Mahadik, S.P. (1993). Role of gangliosides in behavioral and biochemical actions of alcohol: cell membrane structure and function.Alcoholism: Clin. Exp. Res. 17: 329–339.

    Article  CAS  Google Scholar 

  • Hungund, B.L., Reddy, M.V., Bharucha, V.A., and Mahadik, S.P. (1990). Monosialogangliosides (GMI and AGF2) reduce acute alcohol intoxication: Sleep time, mortality and cerebral cortical Na+, K+-ATPase.Drug Dev. Res. 19: 443–451.

    Article  CAS  Google Scholar 

  • Hungund, B.L., Reddy, M.V., and Mahadik, S.P. (1989). Gangliosides protect acute alcohol action, mortality and plasma membrane changes.Trans. Am. Soc. Neurochem. 20: 108.

    Google Scholar 

  • Imperato, A., and DiChiara, G. (1986). Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol.J. Pharmacol. Exp. Ther. 239: 228–239.

    Google Scholar 

  • Iorio, K.R., Reinlib, L., Tabakoff, B., and Hoffman, P.L. (1991). NMDA-induced D[Ca2+]i enhanced by chronic ethanol treatment in cultured cerebellar granule cells.Alcoholism: Clin. Exp. Res. 15: 333.

    Google Scholar 

  • Iorio, K.R., Reinlib, L., Tabakoff, B., and Hoffman, P.L. (1992). Chronic exposure of cerebellar granule cells to ethanol results in increased N-Methyl-D-Aspartate receptor function.Mol. Pharmacol. 41: 1142–1148.

    CAS  PubMed  Google Scholar 

  • Jatlow, P., Elsworth, J.D., Bradberry, C.W., Winger, G., Taylor, J.R., Russell, R. and Roth, R.H. (1991). Cocaethlyene: A neuropharmacologically active metabolite associated with concurrent cocaine-ethanol ingestion.Life Sci. 48: 1787–1794.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S., Knight, R., Marmer, D.G., and Steele, R.W. (1981). Immune deficiency in fetal alcohol syndrome.Pediatr. Res. 15: 908–911.

    CAS  PubMed  Google Scholar 

  • Johnston, M.C., and Bronsky, P.T. (1991). Animal models for human craniofacial malformations.J. Craniofac. Genet. Dev. Biol. 11: 277–291.

    CAS  PubMed  Google Scholar 

  • Jones, D.P. (1981). Hypoxia and drug metabolism.Biochem. Pharmacol. 30: 1019–1023.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K.L. (1973a). Recognition of the fetal alcohol syndrome in early infancy.Lancet 2: 999–1001.

    Article  Google Scholar 

  • Jones, K.L., Smith, D.W., Ulleland, C.N., and Streissguth, A.P. (1973b). Pattern of malformation in offspring of chronic alcoholic mothers.Lancet 1: 1267–1269.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K.L., Chambers, C.C., and Johnson, K.A. (1991). The effect of disulfiram on the unborn baby.Teratology 43: 438.

    Google Scholar 

  • Jones, P.J.H., Leichter, J., and Lee, M. (1981). Placental blood flow in rats fed alcohol before and during gestation.Life Sci. 29: 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen, M.B., and Diemer, N.H. (1982). Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate.Acta Neurol. Scand. 66: 536–546.

    Article  CAS  PubMed  Google Scholar 

  • Kater, S.B., Mattson, M.P., Cohan, C., and Connor, J. (1988). Calcium regulation of the neuronal growth cone.TINS.11: 315–321.

    CAS  PubMed  Google Scholar 

  • Keir, W.J. (1991). Inhibition of retinoic acid synthesis and its implications in fetal alcohol syndrome.Alcoholism: Clin. Exp. Res. 15: 560–564.

    Article  CAS  Google Scholar 

  • Kelly, S.J., Mahoney, J.C., and West, J.R. (1990). Changes in brain microvasculature resulting from early postnatal alcohol exposure.Alcohol 7: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, L.A. (1984). The pathogenesis of brain abnormalities in the fetal alcohol syndrome: an integrating hypothesis.Teratology 29: 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Keppen, L.D., Pysher, T. and Rennert, O.M. (1985). Zinc deficiency acts as a co-teratogen with alcohol in fetal alcohol syndrome.Pediatr. Res. 19: 944–947.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, W.R. (1990). Dehydration: A new alcohol theory.Alcohol 17: 49–59.

    Article  Google Scholar 

  • Klemm, W.R., Boyles, R., Mathew, J., and Cherlan, L. (1988a). Gangliosides, or sialic acid, antagonize alcohol intoxication.Life Sci. 43: 1837–1843.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, W.R., and Engen, R.L. (1979). Acutely administered alcohol decreases whole-brain sialic acid and cerebellar 2-deoxyribose.J. Neurosci. Res. 4: 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, W.R., and Foster, D.M. (1986). Alcohol, in a single pharmacological dose, decreases brain gangliosides.Life Sci. 39: 897–902.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, W.R., Mathew, J., and Maring, R.G. (1988b). Acute alcohol decreases gangliosides in mouse brain.Alcohol 5: 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Kokotailo, P.K., Adger, H., Jr., Duggan, A.K., Repke, J., and Joffe, A. (1992). Cigarette, alcohol, and other drug use by school-age pregnant adolescents: Prevalence, detection, and associated risk factors.Pediatrics 90: 328–334.

    CAS  PubMed  Google Scholar 

  • Lake-Bakaar, G. (1984). Gastrointestinal complications of alcoholism. In Rosalki, S.B. (ed.),Clinical Biochemistry of Alcoholism. Churchill Livingstone, New York. pp. 227–239.

    Google Scholar 

  • Lancaster, F. E., Phillips, S. M., Patsalos, P. N., and Wiggins, R. C. (1984). Brain myelin in the offspring of ethanol-treated rats:in utero versus lactational exposure by crossfostering offspring of control, pairfed and ethanol treated dams.Brain Res. 309: 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Ledig, M. L., M'Paria, J. R., Louis, J.-C., Fried, R., and Mandel, P. (1980). Effect of alcohol on superoxide dismutase activity in cultured neural cells.Neurochem. Res. 5: 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, B. E. (1987). Ethanol as a neurotoxin.Biochem. Pharmacol. 36: 2055–2059.

    Article  CAS  PubMed  Google Scholar 

  • Lemoine, P., Harrousseau, H., Borteyru, J.P., and Menuet, J.C. (1968). Les enfants de parents alcooliques: anomalies obsérvees: apropos de 127 cas.Ouest Med. 25: 476–482.

    Google Scholar 

  • Liljequist, S. and Engel, J. (1982). Effects of GABAergic agonists and antagonists on various ethanol-induced behavioral changes.Psychopharmacology 78: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T. N., Sun, A. Y., and Sun, G. Y. (1988). Effects of alcohol on arachidonic acid incorporation into lipids of a plasma membrane fraction isolated from brain cerebral cortex.Alcoholism (NY) 12: 795–800.

    CAS  Google Scholar 

  • Littleton, J. M., Brennan, C., and Bouchenafa, O. (1991). The role of calcium flux in the central nervous system actions of ethanol.Ann. New York Acad. Sci. 625: 388–394.

    Article  CAS  Google Scholar 

  • Longo, L.D. (1980). Environmental pollution and pregnancy: Risks and uncertainties for the fetus and infant.Am. J. Obstet. Gynecol. 137: 162–173.

    CAS  PubMed  Google Scholar 

  • Loo, Y. H. (1980). Vitamin B6 effects on the developing brain. In Tryfiate, G. P. (ed.)Vitamin B 6 Metabolism and Role in Growth, Food & Nutrition Press, Wesport, CT, pp. 187–204.

    Google Scholar 

  • Lovinger, D. M., White, G., and Weight, F. F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons.Science 243: 1721–1724.

    Article  CAS  PubMed  Google Scholar 

  • Lumeng, L. (1978). The role of acetaldehyde in mediating the deleterious effect of alcohol on pyridoxal 5′-phosphate metabolism.J. Clin. Invest. 62: 286–293.

    Article  CAS  PubMed  Google Scholar 

  • Mahadik, S. P., and Karpiak, S. E. (1986). GMI ganglioside enhances neonatal cortical development.NeuroToxicol. 7: 161–168.

    CAS  Google Scholar 

  • Maier, S. E., Mahoney, J. C., Goodlett, C. R., and West, J. R. (1994). Strain differences in susceptibility to alcohol-induced Purkinje cell loss demonstrated using unbiased stereological counting methods.Alcoholism: Clin. Exp. Res. 18: 437.

    Article  Google Scholar 

  • Majewska, M.D. (1988). Interaction of ethanol with GABAA receptor in the rat brain: Possible involvement of endogenous steroids.Alcohol 7: 269–273.

    Article  Google Scholar 

  • Mandel, J. L., and Chambon, P. (1979). DNA methylation differences: Organ-specific variations in methylation pattern within and around ovalbumin and other chick genes.Nucleic Acid Res. 7: 2081–2103.

    Article  CAS  PubMed  Google Scholar 

  • Mann, L. T., Bhakthavathsalan, A., Liu, M., and Makowski, P. (1975). Plancetal transport of alcohol and its effect on maternal and fetal acid-base balance.Am. J. Obstet. Gynecol. 122: 837–844.

    CAS  Google Scholar 

  • Marcussen, B.L., Goodlett, C.R., Mahoney, J.C., and West, J.R. (1994). Alcohol-induced Purkinje cell loss during differentiation but not during neurogenesis.Alcohol 11: 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Marks, S.S., Watson, D.L., Carpenter, C.L., Messing, R.O., and Greenberg, D.A. (1989). Comparative effects of chronic exposure to alcohol and calcium channel antagonists on calcium channel antagonist receptors in cultured neural (PC12) cells.J. Neurochem. 53: 168–172.

    Article  CAS  PubMed  Google Scholar 

  • Martz, A., Deitrich, R.A. and Harris, R.A. (1983). Behavioral evidence for the involvement of gamma-aminobutyric acid in the actions of ethanol.Eur. J. Pharmacol 89: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, S.N., Riley, E.P., Jernigan, T.L., Ehlers, C.L., Delis, D.C., Jones, K.L.et al. (1992). Fetal alcohol syndrome: A case report of neuropsychological, MRI, and EEG assessment of two children.Alcohoism: Clin. Exp. Res. 16: 1001–1003.

    Article  CAS  Google Scholar 

  • McClain, C.J., Antonow, D.R., Cohen, D.A., and Shedlofsky, S.I. (1986). Zinc metabolism in alcoholic liver disease.Alcoholism: Clin. Exp. Res. 10: 582–589.

    Article  CAS  Google Scholar 

  • McClain, C.J., and Su, L.-C. (1983). Zinc deficiency in the alcoholic: a review.Alcoholism: Clin. Exp. Res. 7: 5–10.

    Article  CAS  Google Scholar 

  • McDonald, J.W., Silverstein, F.S., and Johnston, M.V. (1987). MK-801 protects the neonatal brain from hypoxic-ischemic damage.Eur. J. Pharmacol. 140: 359–361.

    Article  CAS  PubMed  Google Scholar 

  • McGhee, J.E., and Ginder, G.D. (1979). Specific DNA methylation site in the vicinity of the chicken β-globin gene.Nature 280: 419–420.

    Article  CAS  PubMed  Google Scholar 

  • McGivern, R.F., Clancy, A.N., Hill, M.A., and Noble, E.P. (1984). Prenatal alcohol exposure alters adult expression of sexually dimorphic behavior in the rat.Science 224: 896–898.

    Article  CAS  PubMed  Google Scholar 

  • McMartin, K.E., Collins, T.D., Shiao, C.Q., Vidrine, L., and Redefski, H.M. (1986). Study of dose-dependent and urinary folate excretion produced by ethanol in humans and rats.Alcoholism: Clin. Exp. Res. 10: 419–424.

    Article  CAS  Google Scholar 

  • McMartin, K.E., Bates, W.R., Fortney, T. and Bhandari, S.D. (1989). Effect of acute alcohol on membrane transport of folate. In Sun, G.Y., Rudeen P.K., Wood, W.G., Wei, Y.H. and Sun, A.Y. (eds.),Molecular Mechanisms of Alcohol: Neurobiology and Metabolism, Humana Press, Clifton, NJ, pp. 327–334.

    Google Scholar 

  • McMartin, K.E. and Collins, T.D. (1983). Relationship of alcohol metabolism to folate deficiency produced by alcohol in the rat.Pharmacol. Biochem. Behav. 18: 257.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, A.K. and Ticku, M.K. (1989). Chronic ethanol treatment alters the behavioral effects of Ro 15-4513, a partially negative ligand for benzodiazepine binding sites.Brain Res. 489: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Melchior, D. L., and Steim, J. M. (1976). Thermotropic transitions in biomembranes.Ann. Rev. Biophys. Bioeng. 5: 205–238.

    Article  CAS  Google Scholar 

  • Messing, R. O., Carpenter, C. L., Diamond, I., and Greenberg, D. A. (1986). Ethanol regulates calcium channels in clonal neural cells.Proc. Natl. Acad. Sci. (USA),83: 6213–6215.

    Article  CAS  Google Scholar 

  • Messing, R. O., Henteleff, M., and Park J. J. (1991a). Ethanol enhances growth factor-induced neurite formation in PC12 cells.Brain Res. 565: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Messing, R. O., Peterson, P. J., and Henrich, C. J. (1991b). Chronic ethanol exposure increases levels of protein kinase C D and E and protein kinase C-mediated phosphorylation in cultured neural cells.J. Biol. Chem. 266: 23428–23432.

    CAS  PubMed  Google Scholar 

  • Mezey, E., and Holt, R. R. (1971). The inhibitory effect of alcohol on retinol oxidation by human liver and cattle retina.Exp. Mol. Pathol. 15: 148–156.

    Article  CAS  PubMed  Google Scholar 

  • Michaelis, E. K. (1990). Fetal alcohol exposure: cellular toxicity and molecular events involved in toxicity.Alcoholism: Clin. Exp. Res. 14: 819–826.

    Article  CAS  Google Scholar 

  • Michaelis, E. K., Mulvaney, M. J., and Freed, W. J. (1978). Effects of acute and chronic alcohol intake on synaptosomal glutamate binding activity.Biochem. Pharmacol. 27: 1685–1691.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. W. (1986). Effects of alcohol on the generation and migration of cerebral cortical neurons.Science 233: 1308–1311.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. W. (1993). Migration of cortical neurons is altered by gestational exposure to alcohol.Alcoholism: Clin. Exp. Res. 17: 304–314.

    Article  CAS  Google Scholar 

  • Miller, M. W., Chiaia, N. L., and Rhoades, R. W. (1990). Intracellular recording and injection study of corticospinal neurons in the rat somatosensory cortex: effect of prenatal exposure to alcohol.J. Comp. Neurol. 297: 91–105.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. W., and Potempa, G. (1990). Numbers of neurons and glia in mature rat somatosensory cortex: effects of prenatal exposure to alcohol.J. Comp. Neurol. 293: 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. W., and Robertson, S. (1993). Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex.J. Comp. Neurol. 337: 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Mochly-Rosen, D., Chang, F. H., Cheever, L., Kim, M., Diamond, I., and Gordon, A. S. (1988). Chronic ethanol causes heterologous desensitization of receptors by reducing as messenger mRNA.Nature 333: 848–850.

    Article  CAS  PubMed  Google Scholar 

  • Morgane, P. J., Austin-LaFrance, R., Bronzino, J., Tonkiss, J., Diaz-Cintra, S., Cintra, L., Kemper, T. and Galler, J. R. (1993). Prenatal malnutrition and development of the brain.Neurosci. Biobehav. Rev. 17:91–128.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A. B., and Hodgen, G. D. (1982). Maternal alcohol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys.Science 218: 700–702.

    Article  CAS  PubMed  Google Scholar 

  • Nakahiro, M., Arakawa, O. and Narahashi, T. (1991). Modulation of gamma-aminobutyric acid receptor-channel complex by alcohols.J. Pharmacol. Exper. Ther. 259: 235–240.

    CAS  Google Scholar 

  • Napoli, J. L., and Race, K. R. (1987). The biosynthesis of retinoic acid from retinol by rat tissuesin vitro.Arch. Biochem. Biophys. 255: 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Nestoros, J. N. (1980). Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex.Science 209: 708–710.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, R. M., Beloqui, O., Potter, B. J., and Berk, P. D. (1984). Iron uptake from transferrin by isolated hepatocytes: Effect of alcohol.Biochem. Biophys. Res. Commun.125: 824–830.

    Article  CAS  PubMed  Google Scholar 

  • Oei, H. H. H., Stroo, W. E., Burton, K. P., and Schaffer, S. W. (1982). A possible role of xanthine oxidase in producing oxidative stress in the heart of chronically alcohol treated rats.Res. Commun. Chem. Path. Pharmacol. 38: 453–461.

    CAS  Google Scholar 

  • Ordonez, L. A. (1977). Control of the availability to the brain of folic acid, vitamin B12 and choline. In Wurtman, R. J. and Wurtman, J. J. (eds.),Nutrition and the Brain, Vol. 1, Raven Press, NY, pp. 205–248.

    Google Scholar 

  • O'Shea, K. S., and Kaufman, M. H. (1979). The teratogenic effect of acetaldehyde: implications for the study of the fetal alcohol syndrome.J. Anat. 128: 65–76.

    PubMed  Google Scholar 

  • Ouellette, E. M. (1979). Alcohol in pregnancy and its effects on offspring. In Gastineau, C. F., Darby, W. J. and Turner, T. B. (eds.),Fermented Food Beverages in Nutrition, Academic Press, New York, pp. 439–454.

    Google Scholar 

  • Pantazis, N. J., Dohrman, D. P., Luo, J., Goodlett, C. R., and West, J. R. (1991). Alcohol reduces the number of Pheochromocytoma (PC12) cells in culture.Alcohol 9: 171–180.

    Article  Google Scholar 

  • Pantazis, N. J., Dohrman, D. P., Luo, J., Goodlett, C. R., and West, J. R. (1993). N-Methyl-D-Aspartate (NMDA) prevents alcohol-induced depletion of cerebellar granule cells in culture.Alcoholism: Clin. Exp. Res.,17: 453.

    Article  Google Scholar 

  • Pantazis, N. J., Luo, J., and West, J. R. (1994). Growth factor-mediated neuroprotection against alcohol-induced death of cerebellar granule cells.Alcoholism: Clin. Exp. Res. 18: 443.

    Google Scholar 

  • Peiffer, J., Majewski, F., Fishbach, H., Bierich, J. R., and Volk, B. (1979). Alcohol embryo- and fetopathy.J. Neurol. Sci. 41: 125–137.

    Article  CAS  PubMed  Google Scholar 

  • Pennington, S. N. (1990). Molecular changes associated with alcohol-induced growth suppression in the chick embryo.Alcoholism: Clin. Exp. Res. 14: 832–837.

    Article  CAS  Google Scholar 

  • Pennington, S. N., Boyd, J. W., Kalmus, G. W., and Wilson, R. W. (1983). The molecular mechanism of fetal alcohol syndrome (FAS). I. Ethanol-induced growth suppression.Neurobehav. Toxicol. Teratol. 5: 259–262.

    CAS  PubMed  Google Scholar 

  • Pennington, S. N., Allen, Z., Runion, J., Farmer, P., Rowland, L., and Kalmus, G. (1985). Prostaglandin synthesis inhibitors block alcohol-induced fetal hypoplasia.Alcoholism: Clin. Exp. Res. 9: 433–437.

    Article  CAS  Google Scholar 

  • Pentney, R. J., Cotter, J. R., and Abel, E. L. (1984). Quantitative measures of mature neuronal morphology after in utero ethanol exposure.Neurobehav. Toxicol. Teratol. 6: 59–65.

    CAS  PubMed  Google Scholar 

  • Phillips, D. E. (1994). Effects of alcohol on glial cell developmentin vivo: Morphological studies.Alcohol and Glial Cells. NIAAA Research Monograph:27. NIH, Bethesda, MD.

    Google Scholar 

  • Phillips, D. E., and Krueger, S. K. (1990). Effects of postnatal ethanol exposure on glial cell development in rat optic nerve.Exp. Neurol. 107: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S. C., and Cragg, B. G. (1982). A change in susceptibility of rat cerebellar Purkinje cells to damage by alcohol during fetal, neonatal and adult life.Neuropathol. Appl. Neurobiol. 8: 441–454.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, D. R., Goodlett, C. R., and West, J. R. (1989). Differential neuronal loss following early postnatal alcohol exposure.Teratology 40: 113–126.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, D. R., and West, J. R. (1986). Blood alcohol concentration: a critical factor for producing fetal alcohol effects.Alcohol 3: 269–272.

    Article  CAS  PubMed  Google Scholar 

  • Potter, G. J., Chapman, R. W. G., Nunes, R. M., Sorrentino, D., and Sherlock, S. (1985). Transferrin metabolism in alcoholic liver disease.Hepatology 5: 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Pullarkat, R. K. (1991). Hypothesis: Prenatal alcohol-induced birth defects and retinoic acid.Alcoholism: Clin. Exp. Res. 15: 565–567.

    Article  CAS  Google Scholar 

  • Quarles, R., and Brady, R. (1971). Synthesis of glycoproteins and gangliosides in developing rat brain.J. Neurochem. 18: 1809–1820.

    Article  CAS  PubMed  Google Scholar 

  • Rabe, C. S., and Weight, F. F. (1988). Effects of alcohol on neurotransmitter release and intracellular free calcium in PC12 cells.J. Pharmacol. Exp. Therap. 244: 417–422.

    CAS  Google Scholar 

  • Rabin, R. A. (1990). Chronic ethanol exposure of PC12 cells alters adenylate cyclase activity and intracellular cyclic AMP content.J. Pharm. Exp. Ther. 252: 1021–1027.

    CAS  Google Scholar 

  • Rabin, R. A. (1993.). Ethanol-induced desensitization of adenylate cyclase: Role of the adenosine receptor and GTP-binding proteins.J. Pharm. Exp. Ther. 264: 977–983

    CAS  Google Scholar 

  • Randall, C. L., Anton, R. F., and Becker, H. C. (1987). Alcohol, pregnancy, and prostaglandin.Alcoholism: Clin. Exp. Res. 11: 32–36.

    Article  CAS  Google Scholar 

  • Randall, C. L., Anton, R. F., Becker, H. C., Hale, R. L., and Ekblad, U. (1991a). Aspirin dose-dependently reduces alcohol-induced birth defects and prostaglandin E levels in mice.Teratology 44: 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Randall, C. L., Becker, H. C., and Anton, R. F. (1991b). Effect of ibuprofen on alcohol-induced teratogenesis in mice.Alcoholism: Clin. Exp. Res. 15: 673–677.

    Article  CAS  Google Scholar 

  • Ranganathan, S., Davis, D. G., and Hood, R. D. (1987). Developmental toxicity of alcohol indrosophila melanogaster.Teratology 36: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Raub, W. (1990). From the National Institutes of Health.JAMA 264: 2731.

    Article  CAS  PubMed  Google Scholar 

  • Razin, A., and Riggs, A. D. (1980). DNA methylation and gene function.Science 210: 604–609.

    Article  CAS  PubMed  Google Scholar 

  • Regoeczi, E., Chindemi, P. A. and Debanne, M. T. (1984). Transferrin glycans: a possible link between alcoholism and hepatic siderosis.Alcoholism: Clin. Exp. Res. 8: 287–292.

    Article  CAS  Google Scholar 

  • Reisenauer, A. M., Buffington, C. A. T., Villanueva, J. A., and Halsted, C. H. (1989). Folate absorption in alcoholic pigs:in vitro intestinal perfusion studies.Am. J. Clin. Nutr. 50: 1429.

    CAS  PubMed  Google Scholar 

  • Rezazadeh, S. M., Woodward, J. J., and Leslie, S. W. (1989). Fura-2 measurement of cytosolic free calcium in rat brain cortical synaptosomes and the influence of alcohol.Alcohol 6: 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G. (1981). Ganglioside stimulation of axonal sproutingin vitro.Science.214: 577–578.

    Article  CAS  PubMed  Google Scholar 

  • Roivainen, R., McMahon, T. and Messing, R. O. (1993). Protein kinase C isozymes that mediate enhancement of neurite outgrowth by ethanol and phorbol testers in PC12 cells.Brain Res. 624: 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Rosett, H. L., and Weiner, L. (1984).Alcohol and the Fetus. Oxford University Press, New York.

    Google Scholar 

  • Rossetti, Z. L., Melis, F., Carboni, S. and Gessa, G. L. (1991). Marked decrease of extraneuronal dopamine after alcohol withdrawal in rats: Reversal by MK-801.Eur. J. Pharmacol. 200: 371–372.

    Article  CAS  PubMed  Google Scholar 

  • Russell, R. M., Roseberg, I. H., Wilson, P. D., Iber, F. L., Oaks, E. B., Giovetti, A. C.et al. (1983). Increased urinary excretion and prolonged turnover time of folic acid during alcohol ingestion.Am. J. Clin. Nutr. 38: 64–70.

    CAS  PubMed  Google Scholar 

  • Ryle, P. R. and Thomson, A. D. (1984). Nutrition and vitamins in Alcoholism. In Rosalki, S. B. (ed.),Clinical Biochemistry of Alcoholism. Churchill Livingstone, New York, pp. 188–224.

    Google Scholar 

  • Samson, H. H., and Diaz, J. (1981). Altered development of brain by neonatal alcohol exposure: Zinc levels during and after exposure.Alcoholism: Clin. Exp. Res. 5: 563–568.

    Article  CAS  Google Scholar 

  • Sandstead, H. H., Gillespie, D. D., and Brady, R. N. (1972). Zinc deficiency: Effect on brain of the suckling rat.Pediatr. Res. 6: 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Satre, M. A., and Kochhar, D. M. (1989). Elevations in the endogenous levels of the putative morphogen retinoic acid in embryonic mouse limb-buds associated with limb dysmorphogenesis.Dev. Biol. 133: 529–536.

    Article  CAS  PubMed  Google Scholar 

  • Savage, D. D., Queen, S. A., Sanchez, C. F., Paxton, L. L., Mahoney, J. C., Goodlett, C. R., and West, J. R. (1991). Prenatal ethanol exposure during the last third of gestation in rats reduces hippocampal NMDA agonist binding site density in 45-day-old offspring.Alcohol 9: 37–41.

    Article  Google Scholar 

  • Schenker, S., Becker, H. C., Randall, C. L., Phillips, D. K., Baskin, G. S., and Henderson, G. I. (1990). Fetal alcohol syndrome: current status of pathogenesis.Alcoholism: Clin. Exp. Res. 14: 635–647.

    Article  CAS  Google Scholar 

  • Shane, B. S., and Contractor, S. F. (1980). Vitamin B6 status and metabolism in pregnancy. In Tryfiate, G. P. (ed.),Vitamin B6 Metabolism and Role in Growth, Food & Nutrition Press, Wesport, CT, pp. 137–171.

    Google Scholar 

  • Siggins, G. R., Pittman, Q. J., and French, E. D. (1987). Effects of ethanol on CA1 and CA3 pyramical cells in the hippocampal slice preparation: An intracellular study.Brain Res. 414: 22–34.

    Article  CAS  PubMed  Google Scholar 

  • Signs, S. A., Yamamoto, B. K., and Schecter, M. D. (1987).In vivo electrochemical determination of extracellular dopamine in the caudate of freely moving rats after a low dose of ethanol.Neuropharmacology 26: 1653–1656.

    Article  CAS  PubMed  Google Scholar 

  • Simonsson, P., Rodriguez, F. D., Loman, N., and Alling, C. G. (1991). Proteins coupled to phospholipase C: molecular targets of long-term ethanol exposure.J. Neurochem. 56: 2018–2026.

    Article  CAS  PubMed  Google Scholar 

  • Singer, J., Roberts-Ems, J., Luthardt, F. W., and Riggs, A. D. (1979). Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit.Nucleic Acids Res. 7: 2369–2385.

    Article  CAS  PubMed  Google Scholar 

  • Skattebol, A. and Rabin, R. A. (1987). Effects of ethanol on45Ca2+ uptake in synaptosomes and in PC 12 cells.Biochem. Pharmacol. 36: 2227–2229.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. E., Foundas, A., and Canale, J. (1986). Effects of perinatally administered alcohol on the development of the cerebellar granule cell.Exp. Neurol. 92: 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. N., Brien, J. F., Carmichael, L., Clarke, D. W., and Patrick, J. (1989). Effects of acute, multiple-dose ethanol on maternal and fetal blood gases and acid-base balance in the near-term pregnant ewe.Can. J. Physiol. Pharmacol. 67: 686–688.

    CAS  PubMed  Google Scholar 

  • Smith, R. M. (1984). Ethyl esters of arylhydroxy- and arylhydroxy-methoxycocaines in the urines of simultaneous cocaine and ethanol users.J. Anal. Toxicol. 8: 38–42.

    CAS  PubMed  Google Scholar 

  • Smith, T. L. (1991). Selective effects of acute and chronic ethanol exposure on neuropeptide and guanine nucelotide stimulated phospholipase C activity in intact NIE-115 neuroblastoma.J. Pharmacol. Exp. Ther. 258: 410–415.

    CAS  PubMed  Google Scholar 

  • Sreenathan, R. N., Padmanabhan, R., and Singh, S. (1982). Teratogenic effects of acetaldehyde in the rat.Drug Alcohol Depend. 9: 339–350.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, C. J. (1985). Alcohol consumption during pregnancy among southern city women.Drug Alcohol Depend. 16: 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Stockard, C. R. (1910). The influence of alcohol and other anaesthetics on embryonic development.Am. J. Anat. 10: 369–392.

    Article  Google Scholar 

  • Stoltenburg-Didinger, G., and Spohr, H. L. (1983). Fetal alcohol syndrome and mental retardation: spine distribution of pyramidal cells in prenatal alcohol-exposed rat cerebral cortex; a Golgi study.Develop. Brain Res. 11: 119–123.

    Article  CAS  Google Scholar 

  • Stone, M. L. (1968). Effects on the fetus of folic acid deficiency in pregnancy.Clin. Obstet. Gynecol. 11: 1143–1153.

    Article  CAS  PubMed  Google Scholar 

  • Streissguth, A. P., Aase, J. M., Clarren, S. K., Randalls, S. P., LaDue, R. A., and Smith, D. W. (1991). Fetal Alcohol syndrome in adolescents and adults.JAMA 265: 1961–1967.

    Article  CAS  PubMed  Google Scholar 

  • Streissguth, A. P., Barr, H. M., and Sampson, P. D. (1990). Moderate prenatal alcohol exposure: effects on child IQ and learning problems at age 7 1/2 years.Alcoholism: Clin. Exp. Res. 14: 662–669.

    Article  CAS  Google Scholar 

  • Streissguth, A. P., Barr, H. M., and Martin, D. C. (1983). Maternal alcohol and neonatal habituation assessed with the Brazelton Scale.Child Develop. 54: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  • Streissguth, A. P., Barr, H. M., Martin, D. C., and Herman, C. S. (1980). Effects of maternal alcohol, nicotine and caffeine use during pregnancy on infants mental and motor development at 8 months.Alcoholism: Clin. Exp. Res. 4: 152–164.

    Article  CAS  Google Scholar 

  • Sulik, K. K., Johnston, M. C., and Webb, M. A. (1981). Fetal alcohol syndrome: embryogenesis in a mouse model.Science 214: 936–938.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S. H., Fu, Y. H., Jou, T. C., Sun, G. Y., and Sun, A. Y. (1987). Ethanol effects on phospholipids and triacylglycerols rat brain astrocyte cell line.Alcoh. Alcoh. (Suppl).1: 691–695.

    CAS  Google Scholar 

  • Surgeon General's Advisory on Alcohol and Pregnancy. (1981).FDA Drug Bulletin 11(2): 9–10.

    Google Scholar 

  • Swaab, D. F., and Mirmiran, M. (1984). Possible mechanisms underlying the teratogenic effects of medicines in the developing brain. In: Yanai, J. (ed.)Neurobehavioral Teratology. Elsevier, Amsterdam, pp. 55–71.

    Google Scholar 

  • Tabakoff, B., Hoffman, P. L., and Petersen, R. C. (1990). Advances in neurochemistry: A leading edge of alcohol research.Alcoh. Health Res. World 14: 138–143.

    Google Scholar 

  • Tamura, T., and Halsted, C. H. (1983). Folate turnover in chronically alcoholic monkeys.J. Lab. Clin. Med. 101: 623–628.

    CAS  PubMed  Google Scholar 

  • Thomson, A. D. and Pratt, O. E. (1992). Interaction of nutrients and alcohol: Absorption, transport, utilization and metabolism. In: Watson, R. R. and Watzl, B. (Eds.).Nutrition and Alcohol. CRC Press, Boca Raton, pp. 75–99.

    Google Scholar 

  • Van Thiel, D. H., Gavaler, J., and Leste, R. (1974). Ethanol inhibition of vitamin A metabolism in the testes: Possible mechanism of sterility in alcoholics.Science 186: 941–942.

    Article  CAS  PubMed  Google Scholar 

  • Varma, P. K., and Persaud, T. V. N. (1979). Influence of pyrazole, an inhibitor of alcohol dehydrogenase on the prenatal toxicity of alcohol in rats.Res. Commun. Chem. Path. Pharmacol. 26: 65–73.

    CAS  Google Scholar 

  • Walker, D. W., Heaton, M. B., Smothers, C. T. and Hunter, B. E. (1990). Chronic ethanol ingestion reduces the neurotrophic activity contained in rat hippocampus.Alcoholism. Clin. Exp. Res. 14: 350.

    Google Scholar 

  • Walker, D. W., Lee, N., Heaton, M. B., King, M. A., and Hunter, B. E. (1992). Chronic ethanol consumption reduces the neurotrophic activity in rat hippocampus.Neurosci. Lett. 147: 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Wallgren, H., and Berry, H. (1970).Actions of Alcohol. Elsevier, Amsterdam.

    Google Scholar 

  • Weinberg, J. (1988). Hyperresponsiveness to stress: differential effects of prenatal ethanol on males and females.Alcoholism: Clin. Exp. Res. 12: 647–652.

    Article  CAS  Google Scholar 

  • Weinberg, J., and Jerrells, T. R. (1991). Suppression of immune responsiveness: sex differences in prenatal alcohol effects.Alcoholism: Clin. Exp. Res. 15: 525–531.

    Article  CAS  Google Scholar 

  • Weinberg, J., Nelson, L. R., and Taylor, A. N. (1986). Hormonal effects of fetal alcohol exposure. In:Alcohol and Brain Development. West, J. R. (ed.) Oxford University Press, New York, pp. 310–342.

    Google Scholar 

  • West, J. R. (1986). (ed.).Alcohol and Brain Development. Oxford University Press, New York.

    Google Scholar 

  • West, J. R., Alkana, R. L., and DeBold, J. F. (1986a). Alcohol exposure and altered brain development: present status and implications for future research. In West, J. R. (ed.),Alcohol and Brain Development, Oxford University Press, New York, pp. 406–427.

    Google Scholar 

  • West, J. R., Goodlett, C. R., and Brandt, J. P. (1990). New approaches to research on the long-term consequences of prenatal exposure to alcohol.Alcoholism: Clin. Exp. Res. 14: 684–689.

    Article  CAS  Google Scholar 

  • West, J. R., and Hamre, K. M. (1985). Effects of alcohol exposure during different periods of development: changes in hippocampal mossy fibers.Develop. Brain Res. 17: 280–284.

    Article  CAS  Google Scholar 

  • West, J. R., Hamre, K. M., and Cassell, M. D. (1986b). Effects of alcohol exposure during the third trimester equivalent on neuron number in rat hippocampus and dentate gyrus.Alcoholism: Clin. Exp. Res. 10: 190–197.

    Article  CAS  Google Scholar 

  • West, J. R., Hodges, C. A., and Black, A. C., Jr. (1981). Prenatal exposure to alcohol alters the organization of hippocampal mossy fibers in rats.Science 211: 957–959.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, K., Drambska, M., Sher, J. H., and Qazi, Q. (1983). A clinical neuropathological study of the fetal alcohol syndrome.Neuropediatrics 14:197–204.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, L. S. (1989). Eicosanoids. In Siegel, G. J., Agranoff, B. W., Alberts, R. W., Molinoff, P. B. (eds.),Basic Neurochemistry, Raven Press, New York, pp. 399–414.

    Google Scholar 

  • Wooten, M. W., and Ewald, S. J. (1991). Alcohols synergize with NGF to induce early differentiation of PC12 cells.Brain Res. 550: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak, K. M., Pert, A. Mele, A. and Linnoila, M. (1991). Focal application of alcohols elevates extracellular dopamine in rat brain: A microdialysis study.Brain Res. 540: 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Ylikorkala, O., Halmesmaki, E., and Viinikka, L. (1988). Urinary prostacyclin and thromboxane metabolites in drinking pregnant women and in their infants: Relations to the fetal alcohol effects.Obstetr. Gynecol. 71: 61–66.

    CAS  Google Scholar 

  • Yoshimoto, K., McBride, W. J., Lumeng, L. and Li, T. K. (1992). Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens.Alcohol 9: 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Zachman, R. D., and Grummer, M. A. (1992). Letters to the editor.Alcoholism: Clin. Exp. Res. 16: 141.

    Article  CAS  Google Scholar 

  • Zajac, C. S., and Abel, E. L. (1992). Chapter 4: Animal models of prenatal alcohol exposure.Int. J. Epidemiol. (Suppl. 1).21: S24-S32.

    Google Scholar 

  • Zou, J.-Y., Rabin, R. A. and Pentney, R. J. (1993). Ethanol enhances neurite outgrowth in primary cultures of rat cerebellar macroneurons.Dev. Brain Res. 72: 75–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J.R., Chen, WJ.A. & Pantazis, N.J. Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Metab Brain Dis 9, 291–322 (1994). https://doi.org/10.1007/BF02098878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098878

Key words

Navigation