Skip to main content
Log in

Effects ofl-propionylcarnitine on electrical and mechanical alterations induced by amphiphilic lipids in isolated guinea pig ventricular muscle

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

We examined the effects ofl-propionyl-carnitine (Prop.C), a short-chain acylcarnitine, on amphiphile (l-lysophosphatidylcholine orl-palmitoylcarnitine)-induced electrophysiological and ultrastructural changes in isolated guinea pig ventricular papillary muscles, under acidic conditions (pH 6.9). Conventional microelectrode, tension-recording, and electron microscope techniques were used. Both amphiphiles, at a concentration of 10−4 M, significantly decreased the resting membrane potential, action potential amplitude, and action potential duration, but increased the developed and resting tension. Such amphiphile-induced electrical changes were not observed in muscles pretreated with the beta-blocker, atenolol, although the mechanical changes remained unaffected. The application of Prop.C (10−2 M), in the continued presence of the amphiphiles caused a return of the action potential duration and the developed tension to the control level. However, the resting potential and action potential amplitude remained unaffected; in fact, the maximum upstroke velocity (\(\dot V_{max} \)) of the action potential tended to decrease further. Pretreatment with Prop.C prevented all the amphiphile-induced electrophysiological and mechanical changes, except for\(\dot V_{max} \). Electron microscopic studies revealed that amphiphile-induced ultrastructural changes were prevented, at least in part, in the presence of Prop.C. Thus, Prop.C antagonizes some of deleterious effects of amphiphiles, such as lysophosphatidylcholine and palmitoylcarnitine, upon the electrical and mechanical activities of the ventricular muscle, under acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folts JD, Shug AL, Koke JR, Bittar N (1978) Protection of the ischemic dog myocardium with carnitine. Am J Cardiol 41: 1209–1214

    PubMed  Google Scholar 

  2. Suzuki Y, Kamikawa T, Kobayashi A, Masumura Y, Yamazaki N (1981) Effects ofl-carnitine on tissue levels of acyl carnitine, acyl coenzyme A and high energy phosphate in ischemic dog hearts. Jpn Circ J 45: 687–694

    PubMed  Google Scholar 

  3. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL (1986) Protection of the ischemic myocardium byl-propionylcarnitine: effects on the recovery of cardiac output after ischemia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 20: 536–541

    PubMed  Google Scholar 

  4. Liedtke AJ, Nellis SH (1979) Effect of carnitine in ischemic and fatty acid supplemented swine hearts. J Clin Invest 64: 440–447

    PubMed  Google Scholar 

  5. Liedtke AL, Vary TC, Nellis SH, Fultz CW (1982) Properties of carnitine incorporation in working swine hearts. Circ Res 50: 767–774

    PubMed  Google Scholar 

  6. DiPalma JR, Ritchie DM, McMichael RF (1975) Cardiovascular and antiarrhythmic effects of carnitine. Arch Int Pharmacodyn Ther 217: 246–250

    PubMed  Google Scholar 

  7. Suzuki Y, Kamikawa T, Yamazaki N (1981) Effects ofl-carnitine on ventricular arrhythmias in dogs with acute myocardial ischemia and a supplement of excess free fatty acids. Jpn Circ J 45: 552–559

    PubMed  Google Scholar 

  8. Kotaka K, Miyazaki Y, Ogawa K, Satake T, Sugiyama S, Ozawa T (1981) Protection by carnitine against free fatty acid-induced arrhythmia in canine heart. J Appl Biochem 3: 292–300

    Google Scholar 

  9. Thomsen JH, Shug AL, Yap VU, Patel AK, Karras TJ, DeFelice SL (1979) Improved pacing tolerance of the ischemic human myocardium after administration of carnitine. Am J Cardiol 43: 300–306

    PubMed  Google Scholar 

  10. Suzuki Y, Narita M, Yamazaki N (1982) Effects ofl-carnitine on arrhythmias during hemodialysis. Jpn Heart J 23: 349–359

    PubMed  Google Scholar 

  11. Ferrari R, Cucchini F, Visioli O (1984) The metabolic effects ofl-carnitine in angina pectoris. Int J Cardiol 5: 213–216

    PubMed  Google Scholar 

  12. Kotaka K, Miyazaki Y, Ogawa K, Satake T, Kitazawa M, Sugiyama S, Ozawa T (1981) Protective effects of carnitine and its derivatives against free fatty acid-induced mitochondrial dysfunction. J Appl Biochem 3: 328–336

    Google Scholar 

  13. Aomine M, Arita M, Imanishi S, Kiyosue T, Shimada T (1983) Effects ofl-propionyl-carnitine on electrical and mechanical properties of guinea pig ventricular muscle and canine Purkinje fibers. J Mol Cell Cardiol 15 (Suppl V): V-14

    Google Scholar 

  14. Aomine M, Arita M (1987) Differential effects ofl-propionylcarnitine on the electrical and mechanical properties of guinea pig ventricular muscle in normal and acidic conditions. J Electrocardiol 20: 287–296

    PubMed  Google Scholar 

  15. Corr PB, Cain ME, Witkowski FX, Price DA, Sobel BE (1979) Potential arrhythmogenic electrophysiological derangements in canine Purkinje fibers induced by lysophosphoglycerides. Circ Res 44: 822–832

    PubMed  Google Scholar 

  16. Corr PB, Snyder DW, Cain ME, Crafford WA Jr, Gross RW, Sobel BE (1981) Electrophysiological effects of amphiphiles on canine Purkinje fibers: Implications for dysrhythmia secondary to ischemia. Circ Res 49: 354–363

    PubMed  Google Scholar 

  17. Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55: 135–154

    PubMed  Google Scholar 

  18. Aomine M, Arita M, Imanishi S, Kiyosue T (1982) Surface layer ATP-related contraction in isolated, superfused canine ventricular papillary muscle: An isotachophoretic analysis. Jpn J Physiol 32: 895–910

    PubMed  Google Scholar 

  19. Jennings RD, Ganote GE (1974) Structural changes in myocardium during acute ischemia. Circ Res 34, 35 (Suppl III): III-156–172

    Google Scholar 

  20. Downar E, Janse MJ, Durrer D (1977) The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 56: 217–224

    PubMed  Google Scholar 

  21. Arnsdorf MF, Sawicki GJ (1981) The effects of lysophosphatidylcholine, a tonic metabolic ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ Res 49: 16–30

    PubMed  Google Scholar 

  22. Owens K, Kennett FF, Weglicki WB (1982) Effects of fatty acid intermediates on Na+-K+-ATPase activity of cardiac sarcolemma. Am J Physiol 242: H456-H461

    PubMed  Google Scholar 

  23. Fink KL, Gross RW (1984) Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ Res 55: 585–594

    PubMed  Google Scholar 

  24. Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circ Res 52: 543–556

    PubMed  Google Scholar 

  25. Kiyosue T, Arita M (1986) Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pflügers Arch 406: 296–302

    Google Scholar 

  26. Sobel BE, Corr PB, Robison AK, Goldstein F, Witkowski FX, Klein MS (1978) Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62: 546–553

    PubMed  Google Scholar 

  27. Snyder DW, Crafford WA Jr, Glashow JL, Rankin D, Sobel BE, Corr PB (1981) Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol 241: H700-H707

    PubMed  Google Scholar 

  28. Inoue D, Pappano AJ (1983)l-Palmitylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 52: 625–634

    PubMed  Google Scholar 

  29. Nakaya H, Tohse N (1986) Electrophysiological effects of acetyl glyceryl ether phosphorylcholine on cardiac tissues: Comparison with lysophosphatidylcholine and long chain acyl carnitine. Br J Pharmacol 89: 749–757

    PubMed  Google Scholar 

  30. Corr PB, Snyder DW, Lee BI, Gross RW, Keim CR, Sobel BE (1982) Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol 243: H187-H195

    PubMed  Google Scholar 

  31. Pogwizd SU, Onuffer JR, Kramer JB, Sobel BE, Corr PB (1986) Induction of delayed afterdepolarization and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 59: 416–426

    PubMed  Google Scholar 

  32. Pitts BJR, Tate CA, Van Winkle WB, Wood JM, Entman ML (1978) Palmitylcarnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum: A possible role in myocardial ischemia. Life Sci 23: 391–402

    PubMed  Google Scholar 

  33. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwarz A (1979) In vitro effects of palmitylcarnitine on cardiac plasmamembrane Na, K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem 254: 12404–12410

    PubMed  Google Scholar 

  34. Lamers JMJ, de Jonge-Stinis JT, Verdouw PD, Hülsmann WC (1987) On the possible role of long chain fatty acylcarnitine accumulation in producing functional and calcium permeability changes in membranes during myocardial ischemia. Cardiovasc Res 21: 313–322

    PubMed  Google Scholar 

  35. Lamers JMJ, Stinis HT, Montfoot AD, Hulsmann WC (1984) The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. Biochim Biophys Acta 774: 127–137

    PubMed  Google Scholar 

  36. Sedlis SP, Corr PB, Sobel BE, Ahumada GG (1983) Lysophosphatidylcholine potentiates Ca2+ accumulation in rat cardiac myocytes. Am J Physiol 244: H32-H38

    PubMed  Google Scholar 

  37. Aomine M, Nobe S, Arita M (1989) Electrophysiological effects of a short chain acyl carnitine,l-propionylcarnitine, on isolated canine Purkinje fibers. J Cardiovasc Pharmacol 13: 494–501

    PubMed  Google Scholar 

  38. Heathers GP, Yamada KA, Kanter EM, Corr PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in alpha1-adrenergic receptors on adult canine myocytes. Circ Res 61: 735–746

    PubMed  Google Scholar 

  39. Sashida H, Abiko Y (1986) Protective effect of diltiazem on ultrastructural alterations induced by coronary occlusion and reperfusion in dog hearts. J Mol Cell Cardiol 18: 401–411

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aomine, M., Arita, M. & Shimada, T. Effects ofl-propionylcarnitine on electrical and mechanical alterations induced by amphiphilic lipids in isolated guinea pig ventricular muscle. Heart Vessels 4, 197–206 (1988). https://doi.org/10.1007/BF02058587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058587

Key words

Navigation