Skip to main content
Log in

On describing microbial growth kinetics from continuous culture data: Some general considerations, observations, and concepts

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Analysis of continuous culture methodology suggests that this potentially powerful tool for kinetic analysis can be improved by minimizing several inherent shortcomings. Medium background substrates — organic carbon, phosphate, and manganese — were shown to dominate kinetic observations at concentrations below chemical detection methods. Reactor wall growth, culture size distribution changes, sample removal-induced steady state perturbations, and limiting substrate leakage from organisms are treated in terms of kinetic measurement errors. Large variations in maximal growth rates and substrate uptake rates found are attributed to experimental protocol-induced transient states. Relationships are presented for correcting limiting substrate concentrations for lability during sampling, contamination with unreacted medium, and background substrate effects. Analytical procedures are discussed for improved measurement of limiting substrate kinetics involving enzymes, isotopes, and material balance manipulation. Relaxation methods as applied to continuous culture are introduced as a means for isolating separate rate constants describing net substrate transport and for evaluating cellular metabolite leakage. Low velocity growth, multiple substrate metabolism, and endogenous metabolism are discussed along with measurements showing that 1-month generation times for aquatic microorganisms can be quite normal and that the kinetics are compatible withμg/liter limiting substrate concentrations. The concept of regarding growth kinetics as the sum of several net accumulation processes is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anraku, Y. 1968. Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport.J. Biol. Chem. 243: 3128.

    PubMed  Google Scholar 

  2. Barber, R. T., and Ryther, J. H. 1969. Organic chelators: Factors affecting primary production in the Cromwell Current upwelling.J.Exp. Mar. Biol. Ecol. 3: 191.

    Article  Google Scholar 

  3. Blume, P., and Berchild, K. M. 1973. A gas chromatographic analysis of ethanol with identity confirmation.Anal. Biochem. 54: 429.

    Article  PubMed  Google Scholar 

  4. Brown, C. M., and Stanley, S. O. 1972. Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology.J. Appl. Biotechnol. 22: 363.

    Google Scholar 

  5. Button, D. K. 1968. Selective thiamine removal from culture media by ultraviolet irradiation.Appl. Microbiol. 16: 530.

    PubMed  Google Scholar 

  6. Button, D. K. 1969. Effect of clay on the availability of dilute organic nutrients to steady-state heterotrophic populations.Limnol. Oceanogr. 14: 95.

    Google Scholar 

  7. Button, D. K. 1969. Thiamine limited steady state growth of the yeastCryptococcus albidus.J. Gen. Microbiol. 58: 15.

    PubMed  Google Scholar 

  8. Button, D. K., Dunker, S. S., and Morse, M. L. 1973. Continuous culture ofRhodotorula rubra: Kinetics of phosphate-arsenate uptake, inhibition and phosphate-limited growth.J. Bacterial. 113: 599.

    Google Scholar 

  9. Button, D. K., and Garver, J. C. 1966. Continuous culture ofTorulopsis utilis: A kinetic study of oxygen limited growth.J. Gen. Microbiol. 45: 195.

    PubMed  Google Scholar 

  10. Caperon, J. 1968. Population growth response ofIsochrysis galhana to nitrate variation of limiting concentrations.Ecology 49: 866.

    Google Scholar 

  11. Caperon, J., and Meyer, J. 1972. Nitrogen-limited growth of marine phytoplankton. I. Changes in population characteristics with steady state growth rate.Deep-Sea Res. 19: 601.

    Google Scholar 

  12. Chen, M. 1974. Kinetics of phosphorous absorption byCorynebacterium bovis.J. Microbial Ecol. 1: 164.

    Google Scholar 

  13. D'Ambrosio, S. M., Glover, G. I., Nelson, S. O., and Jensen, R. A. 1973. Specificity of the tyrosine-phenylalanine transport system inBacillus subtilis.J. Bacteriol. 115: 673.

    PubMed  Google Scholar 

  14. Droop, M. R. 1973. Some thoughts on nutrient limitation in algae.J. Phycol. 9: 264.

    Google Scholar 

  15. Gale, E. F. 1945. Studies on bacterial amino acid decarboxylases.Biochem. J. 39: 46.

    Google Scholar 

  16. Gieskes, W. W. C., and Van Bennekom, A. J. 1973. Unreliability of the14C method for estimating primary productivity in eutrophic Dutch coastal waters.Limnol. Oceanogr. 18: 494.

    Google Scholar 

  17. Holm-Hansen, O., and Booth, C. R. 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance.Limnol. Oceanogr. 11: 510.

    Google Scholar 

  18. Jannasch, H. W., and Mateles, R. I. 1974. Experimental bacterial ecology studies in continuous culture.Advan. Microbial Physiol. 11: 165.

    Google Scholar 

  19. Kadner, R. J. 1975. Regulation of methionine transport activity inEscherichia coli.J. Bacterial. 122: 110.

    Google Scholar 

  20. Lowry, O. H. 1973. An unlimited microanalytical system.Accounts Chem. Res. 6: 289.

    Article  Google Scholar 

  21. Marr, A. G., Nilson, E. H., and Clark, D. J. 1963. The maintenance requirement ofEscherichia coli.Ann. N. Y. Acad. Sci. 102: 536.

    Google Scholar 

  22. Mateles, R. I., Chain, S. K., and Silver, R. 1967. Microbial physiology and continuous culture. Her Majesty's Stationery Office, Salisbury.

    Google Scholar 

  23. Monod, J. 1949. The growth of bacterial cultures.Ann. Rev. Microbiol. 3: 371.

    Article  Google Scholar 

  24. Monod, J. 1950. La technique de culture; théorie et applications.Ann. Inst. Pasteur 79: 390.

    Google Scholar 

  25. Morowitz, H. J. 1968. Energy Flow in Biology. Academic Press, New York.

    Google Scholar 

  26. Powel, E. O. 1967. Microbial physiology and continuous culture. Her Majesty's Stationery Office, Salisbury.

    Google Scholar 

  27. Robertson, B., Arhelger, S., Kinney, P. J., and Button, D. K. 1973. The Microbial Degradation of Oil Pollutants. Center for Wetland Resources, Baton Rouge.

    Google Scholar 

  28. Shehata, T. E., and Marr, A. G. 1971. Effect of nutrient concentration on the growth ofEscherichia coli.J. Bacterial. 107: 210.

    Google Scholar 

  29. Stanley, P. E. 1971. Organic Scintillations and Liquid Scintillation Counting. Academic Press, New York.

    Google Scholar 

  30. Stephens, K. 1963. Determination of low phosphate concentrations in lake and marine water.Limnol. Oceanogr. 8: 361.

    Google Scholar 

  31. Strickland, J. D. H., and Parsons, T. R. 1965. A manual of sea water analysis.Fish. Res. Board Can. Bull. 125.

  32. Williams, P. J. LeB., and Askew, C. 1968. A method of measuring the mineralization by micro-organisms of organic compounds in sea-water.Deep-Sea Res. 15: 365.

    Google Scholar 

  33. Willis, R. C., and Furlong, C. E. 1975. Interactions of a glutamate-aspartate binding protein with the glutamate transport system inEscherichia coli.J. Biol. Chem. 250: 2581.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, A.T., Robertson, B.R., Dunker, S.S. et al. On describing microbial growth kinetics from continuous culture data: Some general considerations, observations, and concepts. Microb Ecol 2, 261–283 (1975). https://doi.org/10.1007/BF02011647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011647

Keywords

Navigation