Skip to main content
Log in

A statistical-dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models

  • Part II: Modeling and Analysis
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Land surface interacts strongly with the atmosphere at all scales. This has a considerable impact on the hydrologic cycle and the climate. Therefore, in order to produce realistic simulations with climate models, their land-surface processes must be parameterized accurately. Because continental surfaces are usually extremely heterogeneous over the resolvable scales considered in these models, surface parameterizations based on the ‘big leaf-big stoma’ approach (that assume grid-scale homogeneity) fail to represent the land-atmosphere interactions that occur at much smaller scales.

A parameterization based on a statistical-dynamical approach is suggested here. With this approach, each surface grid element of the numerical model is divided into homogeneous land patches (i.e., patches with similar internal heterogeneity). Assuming that horizontal fluxes between the different patches within a grid element are small as compared to the vertical fluxes, patches of the same type located at different places in the grid can be regrouped into one subgrid surface class. Then, for each one of the subgrid surface classes, probability density functions (pdf) are used to characterize the variability of the different parameters of the soil-plant-atmosphere system. These pdf are combined with the equations of the model that describe the dynamic and the energy and mass conservations in the atmosphere.

The potential application of this statistical-dynamical parameterization is illustrated by simulating (i) the development of an agricultural area in an arid region and (ii) the process of deforestation in a tropical region. Both cases emphasize the importance of land-atmosphere interactions on regional hydrologic processes and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avissar, R., Avissar, P., Mahrer, Y., and Bravdo, B. A.: 1986, ‘A Model to Simulate Response of Plant Stomata to Environmental Conditions,Agric. For. Meteor. 34, 21–29.

    Google Scholar 

  • Avissar, R., Dagan, N., and Mahrer, Y.: 1986, ‘Evaluation, in Real time, of the Actual Evapotranspiration Using a Numerical Model’,Proc. Agrotique 86, International Symposium on Automation and robots for Agriculture, Bordeaux, France, March 18–20, 1986, pp. 255–263 (available from first author).

  • Avissar, R. and Keimig, F. T.: 1990, ‘The Parameterization of Plant Stomatal Resistance in Atmospheric Models versus its Observation in the Field’,J. Climate (submitted).

  • Avissar, R. and Mahrer, Y.: 1982, ‘Verification Study of a Numerical Greenhouse Microclimate Model’,Trans. Amer. Soc. Agric. Eng. 25, 1711–1720.

    Google Scholar 

  • Avissar, R. and Mahrer, Y.: 1986, ‘Water Desalination in Solar Earth Stills: A Numerical Study’,Water Resour. Res. 22, 1067–1075.

    Google Scholar 

  • Avissar, R. and Mahrer, Y.: 1988a, ‘Mapping Frost-Sensitive Areas with a Three-Dimensional Local Scale Numerical Model. Part I: Physical and Numerical Aspects’,J. Appl. Meteor. 27, 400–413.

    Google Scholar 

  • Avissar, R. and Mahrer, Y.: 1988b, ‘Mapping Frost-Sensitive Areas with a Three-Dimensional Local Scale Numerical Model. Part II: Comparison with Observations’,J. Appl. Meteor. 27, 414–426.

    Google Scholar 

  • Avissar, R. and Pielke, R. A.: 1989, ‘A Parameterization of Heterogeneous Land Surface for Atmospheric Numerical Models and its Impact on Regional Meteorology’,Mon. Wea. Rev. 117, 2113–2136.

    Google Scholar 

  • Avissar, R. and Pielke, R. A.: 1990, ‘The Impact of Plant Stomatal Control on Mesoscale Atmospheric Circulations’,Agric. For. Meteor. (in press).

  • Avissar, R. and Verstraete, M. M.: 1990, ‘The Representation of Continental Surface Processes in Atmospheric Models’,Rev. Geophys. (in press).

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’,J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Clapp, R. and Hornberger, G.: 1978, ‘Empirical Equations for some Soil Hydraulic Properties’,Water Resour. Res. 14, 601–604.

    Google Scholar 

  • Clarke, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models’,Aust. Meteor. Mag. 18, 51–73.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of Layer of Vegetation’,J. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • De Vries, D. A.: 1963, ‘Thermal Properties of Soils’, in Van Wijk, W. R. (ed.),Physics of Plant Environment, North Holland, Amsterdam, pp. 210–235.

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.: 1986,Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, NCAR Technical Note: NCAR/TN-275+STR, 69 pp.

  • Famiglietti, J. S. and Wood, E. F.: 1990, ‘Evapotranspiration and Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric General Circulation Models’,Surveys in Geophysics 12, 179–204 (this issue).

    Google Scholar 

  • Garrett, A. J.: 1982, ‘A Parameter Study of Interactions Between Convective Clouds and the Boundary-Layer, and Forested Surface’,Mon. Wea. Rev. 110, 1041–1059.

    Google Scholar 

  • Mahfouf, J. F., Richard, E., and Mascart, P.: 1987, ‘The influence of Soil and Vegetation on the Development of Mesoscale Circulation’,J. Climate Appl. Meteor. 26, 1483–1495.

    Google Scholar 

  • Mahrer, Y.: 1984, ‘An Improved Numerical Approximation of the Horizontal Gradients in a Terrain Following Coordinate System’,Mon. Wea. Rev. 112, 918–922.

    Google Scholar 

  • Mahrer, Y. and Avissar, R.: 1985, ‘A Numerical Study of the Effects of Soil Surface Shape upon the Temperature and Moisture Profiles’,Soil Sci. 139, 483–490.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1976, ‘Numerical Simulation of the Air Flow over Barbados’,Mon. Wea. Rev. 104, 1392–1402.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advective Terms in a Numerical Mesoscale Model’,Mon. Wea. Rev. 106, 818–830.

    Google Scholar 

  • McCumber, M. D.: 1980, ‘A Numerical Simulation of the Influence of Heat and Moisture Fluxes upon Mesoscale Circulation’, Ph.D. dissertation, Dept. of Environmental Science, University of Virginia.

  • McNaughton, K. G.: 1987, ‘Comments on “Modeling Effects of Vegetation on Climate” in R. E. Dickinson (ed.)The Geophysiology of Amazonia: Vegetation and Climate Interactions, Wiley & Sons, pp. 339–342.

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’,J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Neumann, J. and Mahrer, Y.: 1971, ‘A Theoretical Study of the Land and Sea Breeze Circulations’,J. Atmos. Sci. 28, 532–542.

    Google Scholar 

  • Ookouchi, Y., Segal, M., Kessler, R. C., and Pielke, R. A.: 1984, ‘Evaluation of Soil Moisture Effects on Generation and Modification of Mesoscale Circulations’,Mon. Wea. Rev. 11, 2281–2292.

    Google Scholar 

  • Philip, J. R. and De Vries, D. A.: 1957, ‘Moisture Movement in Porous Materials Under Temperature Gradients,Trans. Amer. Geophys Union 38, 222–232.

    Google Scholar 

  • Pielke, R. A.: 1974, ‘A Three Dimensional Numerical Model of the Sea Breeze over South Florida’,Mon. Wea. Rev. 102, 115–134.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1975, ‘Technique to Represent the Heated-Planetary Boundary Layer in Mesoscale Models with Coarse Vertical Resolution’,J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Segal, M., Avissar, R., McCumber, M., and Pielke, R. A.: 1988, ‘Evaluation of Vegetation Effects on the Generation and Modification of Mesoscale Circulations’,J. Atmos. Sci. 45, 2268–2292.

    Google Scholar 

  • Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere (SiB) for Use Within General Circulation Models’,J. Atmos. Sci. 43, 505–531.

    Google Scholar 

  • Shukla, J. and Mintz, Y.: 1982, ‘Influence of Land-Surface Evapotranspiration on the Earth's Climate’,Science 215, 1498–1501.

    Google Scholar 

  • Squire, G. R. and Black, C. R.: 1981, ‘Stomatal Behaviour in the Field’, in Jarvis, P. G. and T. A. Mansfield (eds.),Stomatal Physiology, Cambridge University Press, pp. 248–279.

  • Wetzel, P. J. and Chang, J. T.: 1988, ‘Evapotranspiration from Nonuniform Surfaces: A First Approach for Short-Term Numerical Weather Prediction’,Mon. Wea. Rev. 116, 600–621.

    Google Scholar 

  • Wilson, M. F., Henderson-Sellers A., Dickinson, R. E., and Kennedy, P. J.: 1987, ‘Sensitivity of the Biosphere-Atmosphere Transfer Scheme (BATS) to the Inclusion of Variable Soil Characteristics’,J. Climate Appl. Meteor. 26, 341–362.

    Google Scholar 

  • Yamada, T.: 1982, ‘A Numerical Model Simulation of Turbulent Airflow in and Above Canopy’,J. Meteor. Soc. Japan 60, 439–454.

    Google Scholar 

  • Zhang, D. and Anthes, R. A.: 1982, ‘A High-Resolution Model of the Planetary Boundary-Layer Sensitivity Tests and Comparisons with SESAME-79 Data’,J. Appl. Meteor. 21, 1594–1609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avissar, R. A statistical-dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models. Surv Geophys 12, 155–178 (1991). https://doi.org/10.1007/BF01903417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01903417

Keywords

Navigation