Skip to main content
Log in

Wedges I

  • Part III. Invited Papers Dedicated To John Archibald Wheeler
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The wedge problem, that is, the propagation of radiation or particles in the presence of a wedge, is examined in different contexts. Generally, the paper follows the historical order from Sommerfeld's early work to recent stochastic results—hindsights and new results being woven in as appropriate. In each context, identifying the relevant mathematical problem has been the key to the solution. Thus each section can be given both a physics and a mathematics title: Section 2: diffraction by reflecting wedge; boundary value problem of differential equations; solutions defined on mutiply connected spaces. Section 3: geometrical theory of diffraction; identificiation of function spaces. Section 4: path integral solutions; path integration on multiply connected spaces; asymptotics on the boundaries of function spaces. Section 5: probing the shape of the wedge and the roughness of its surface; stochastic calculus. Several propagators and Green functions are given explicitly, some old ones and some new ones. They include the knife-edge propagator for Dirichlet and Neumann boundary conditions, the absorbing knife edge propagator, the wedge propagators, the propagator for a free particle on a μ-sheeted Riemann surface, the Dirichlet and the Neumann wedge Green function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., and Stegun, I. (1965),Handbook of Mathematical Functions (Dover, New York).

    Google Scholar 

  • Aharonov, Y., and Bohm, D. (1959), “Significance of Electromagnetic Potentials in the Quantum Theory,”Phys. Rev. 115, 485.

    Google Scholar 

  • Baker, Bevan B., and Copson, E. T. (1950),The Mathematical Theory of Huygens' Principle, and edn. (Clarendon Press, Oxford).

    Google Scholar 

  • Barber, Michael N., and Ninham, B. W. (1970),Random 2nd Restricted Walks (Gordon and Breach, New York).

    Google Scholar 

  • Berry, M. V. (1980), “Exact Aharonov-Bohm Wave Function Obtained by Applying Dirac's Magnetic Phase Factor,”Eur. J. Phys. 1, 240–244.

    Google Scholar 

  • Berry, M. V. (1981). “Singularities in Waves and Rays,” inLes Houches Session XXXV: Physics of Defects, R. Bahamet al., eds. (North-Holland, Amsterdam), pp. 456–543.

    Google Scholar 

  • Berry, M. V., “Scaling and Non-Gaussian Fluctuation in the Catastrophe Theory of Waves,”Prometheus (UNESCO publication) (to appear).

  • Berry, M. V. and Mount, K. E. (1972), “Semiclassical Approximations in Wave Mechanics,”Rep. Prog. Phys. 35, 315–397.

    Google Scholar 

  • Berry, M. V., and Upstill, C. (1980), “Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns,” inProgress in Optics XVIII, E. Wolf, ed. (North-Holland, Amsterdam), pp. 258–346.

    Google Scholar 

  • Berry, M. V., Chambers, R. G., Lange, M. D., Upstill, C., and Walmsley, J. C. (1980), “Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue,”Eur. J. Phys. 1, 154–162.

    Google Scholar 

  • Bleistein, N., and Handelsman, R. A. (1975),Asymptotic Expansion of Integrals (Holt, Rinehart and Winston, New York).

    Google Scholar 

  • Boersma, J., and Wiegel, F. W. (1983), “Asymptotic Expansions for a Remarkable Class of Random Walks,”Physica A 122, 334–344.

    Google Scholar 

  • Buslaev, V. S., (1968) “Continuum Integrals and the Asymptotic Behaviour of the Solutions of Parabolic Equations ast → 0. Applications to diffraction,” inTopics in Mathematical Physics Vol. 2, M. Sh. Birman, ed. (Consultants Bureau, New York), pp. 67–86.

    Google Scholar 

  • Carslaw, H. S. (1899), “Some Multiform Solutions of the Partial Differential Equation of Physical Mathematics and Their Applications,”Proc. London Math. Soc. 30, 121–163.

    Google Scholar 

  • Carslaw, H. S. (1916–1919), “Diffraction of Waves by a Wedge of Any Angle,”Proc. London Math. Soc. 18, 281–306.

    Google Scholar 

  • Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. (1982)Analysis, Manifolds and Physics, revised edn. (North-Holland, New York).

    Google Scholar 

  • Crandall, R. E. (1983a), “Exact Propagator for Motion Confined to a Sector,”J. Phys. A 16, 513–519.

    Google Scholar 

  • Crandall, R. E. (1983b), “Exact Propagator for Reflectionless Potentials,”J. Phys. A 16, 3005–3011.

    Google Scholar 

  • DeWitt, Cecile Morette (1972), “Feynman Path's Integral”Commun. Math. Phys. 28, 47–67.

    Google Scholar 

  • DeWitt-Morette, C. (1974), “Feynman Path Integrals: I. Linear and Affine Techniques; II. The Feynman-Green Function,”Commun. Math. Phys. 37, 63–81.

    Google Scholar 

  • Dewitt-Morette, C. (1976), “The Semiclassical Expansion”Ann. Phys. 97, 367–399;101, 683.

    Google Scholar 

  • DeWitt-Morette, C. (1984), “Feynman Path Integrals. From the Prodistribution Definition to the Calculation of Glory Scattering,” inStochastic Methods and Computer Techniques in Quantum Dynamics, H. Mitter and L. Pittner, eds.,Acta Phys. Aust. Supp. 26, 101–170.

    Google Scholar 

  • DeWitt-Morette, C., and Nelson, B. (1984), “Glories—and Other Degenerate Points of the Action,”Phys. Rev. D 29 8, 1663–1668.

    Google Scholar 

  • DeWitt-Morette, C., Maheshwari, A., and Nelson, B. (1979), “Path Integration in Non-Relativistic Quantum Mechanics,”Phys. Rep. 50 S, 256–372.

    Google Scholar 

  • DeWitt-Morette, C., Elworthy, K. D., Nelson, B. L., and Sammelman, G. S. (1980), “A stochastic Scheme for Constructing Solutions of the Schrödinger Equations,”Ann. Inst. Henri Poincaré 32, 327–341.

    Google Scholar 

  • Durrett, Richard (1984),Brownian Motion and Martingales in Analysis (Wadsworth Advanced Books and Software, Belmont, California).

    Google Scholar 

  • Edwards, S. F. (1967), “Statistical Mechanics with Topological Constraints: I,”Proc. Phys. Soc. 91, 513–519.

    Google Scholar 

  • Felsen, L. B. (1976), “Propagation and Diffraction of Transient Fields in Non-Dispersive and Dispersive Media,” inTransient Electromagnetic Fields, L. B. Felsen, ed. (Springer-Verlag, New York), pp. 2–176.

    Google Scholar 

  • Ford, Kenneth W., and Wheeler, John A. (1959a), “Semiclassical Description of Scattering,”Ann. Phys. (N.Y.) 7, 259–286.

    Article  Google Scholar 

  • Ford, Kenneth W., and Wheeler, John A. (1959b), “Application of Semiclassical Scattering Analysis,”Ann. Phys. (N.Y.) 7, 287–322.

    Google Scholar 

  • Friedman, Avner (1976),Stochastic Differential Equations and Applications, Vols. 1 and 2 (Academic Press, New York).

    Google Scholar 

  • Gikhman, I. I., and Skorokhod, A. V. (1969),Introduction to the Theory of Random Processes (Saunders, Philadelphia).

    Google Scholar 

  • Goodman, Mark (1981), “Path Integral Solution to the Infinite Square Well,”Am. J. Phys. 49, 843–847.

    Google Scholar 

  • Gradshteyn, I. S., and Ryzhik, I. M. (1980),Tables of Integrals, Series, and Products (Academic Press, New York).

    Google Scholar 

  • Ikeda, Nobuyuki (1982), “On the Asymptotic Behavior of the Fundamental Solution of the Heat Equation on Certain Manifolds,” inProceedings, Taniguchi Symposium, Kantata, pp. 169–195.

  • Ikeda, Nobuyuki (1985), Lectures given at the University of Warwick (unpublished).

  • Itô, Kiyosi, and McKean, Henry P. Jr., (1965),Diffusion Processes and Their Sample Paths (Springer-Verlag, New York).

    Google Scholar 

  • Kac, M. (1959),Probability and Related Topics in Physical Sciences, (Intersicence, New York).

    Google Scholar 

  • Keller, J. B. (1953–1958), “A Geometric Theory of Diffraction,” inCalculus of Variations and Its Applications (Proceedings of a Symposium in Applied Mathematics), L. M. Grarves, ed. (McGraw-Hill, New York).

    Google Scholar 

  • Keller, J. B. (1960–1962), “Geometrical Theory of Diffraction,”J. Opt. Soc. Am. S2, 2, 116–130.

    Google Scholar 

  • Keller, J. B., and McLaughlin, D. W. (1975), “The Feynman Integral,”Am. Math. Mon. 82, 451–465.

    Google Scholar 

  • Knoll, J., and Schaeffer, R. (1976), “Semiclassical Scattering Theory with Complex Trajectories: I. Elastic Waves,”Ann. Phys. (N.Y.) 97, 307–366.

    Google Scholar 

  • Kouyoumjiam, R. G. (1975), “The Geometric Theory of Diffraction and Its Application,” inNumerical and Asymptotic Techniques in Electromagnetics, R. Mittra, ed., Springer-Verlag Topics in Applied Physics Vol. 3 (Springer-Verlag, New York), pp. 165–215.

    Google Scholar 

  • Laidlaw, Michael G. G., and DeWitt-Morette, Cecile (1971), “Feynman Functional Integrals for Systems of Indistinguishable Particles,”Phys. Rev. D 36, 1375–1378.

    Google Scholar 

  • Lebesgue, H. (1924), “Conditions de Regularité, Conditions D'irregularité, Conditions D'impossibilité Dans le Problème de Dirichlet,”C.R. Acad. Sci. (Paris), 349–354.

  • Lee, S. W. (1978), “Path Integrals for Solving Some Electromagnetic Edge Diffractions Problems,”J. Math. Phys. 19, 1414–1422.

    Google Scholar 

  • Lewis, R. M., and Boersma, J. (1969), “Uniform Asymptotic Theory of Edge Diffraction,”J. Math. Phys. 10, 2291–2305.

    Google Scholar 

  • Lewis, R. M., Bleistein, N., and Ludwig, D. (1967), “Uniform Asymptotic Theory of Creeping Waves,”Comm. Pure Appl. Math. 20, 295–328.

    Google Scholar 

  • Longhurst, R. S. (1957),Geometric and Physical Optics (Longmans, Green and Co., London), p. 439.

    Google Scholar 

  • Low, S. G. (1984), “The Knife Edge Problem,” inStochastic Methods and Computer Techniques in Quantum Dynamics, H. Mitter and L. Pittner, eds.,Acta Phys. Austriaca, Suppl. XXVI 171–184.

  • Macdonald, H. M. (1902),Electric Waves, Adams prize essay in the University of Cambridge (Cambridge University Press, Cambridge), pp. 186–198.

    Google Scholar 

  • Molchanov, S. A. (1975), “Diffusion Processes and Riemannian Geometry,”Russ. Math Surv. 30, 1–63 (fromUsp. Mat. Nauk 30, 3–59).

    Google Scholar 

  • Morandi, G. and Menossi, E. (1984), “Path Integrals in Multiply Connected Spaces and the Aharanov-Bohm Effect,”Eur. J. Phys. 5, 49–58.

    Google Scholar 

  • Morette, C. (1951), “On the Definition and Approximation of Feynman's Path Integrals,”Phys. Rev. 81, 848–852.

    Google Scholar 

  • Olariu, S., and Popescu, I. Lovitzu (1985), “The Quantum Effects of Electromagnetic Fluxes,”Rev. Mod. Phys. 57, 339–436.

    Google Scholar 

  • Pauli, W. (1938), “On Asymptotic Series for Functions in the Theory of Diffraction of Light,”Phys. Rev. 54, 924–931.

    Google Scholar 

  • Port, Sidney C., and Stone, Charles J. (1978),Brownian Motion and Classical Potential Theory (Academic Press, New York).

    Google Scholar 

  • Rubinowicz, A. (1938), “On the Anomalous Propagation of Phase in the Focus,”Phys. Rev. 54, 931–936.

    Google Scholar 

  • Schulman, L. S. (1968), “A Path Integral for Spin,”Phys. Rev. 176, 1558–1569.

    Google Scholar 

  • Schulman, L. S. (1971), “Approximate Topologies,”J. Math. Phys. 12, 304–308.

    Google Scholar 

  • Schulman, L. S. (1981),Techniques and Applications of Path Integration (Wiley, New York).

    Google Scholar 

  • Schulman, L. S. (1982), “Exact Time-Dependent Green's Function for the Half-Plane Barrier,”Phys. Rev. Lett. 49, 599–601.

    Google Scholar 

  • Schulman, L. S. (1982–1984), “Ray Optics for Diffraction: A Useful Paradox in a Path Integral Context,” inThe Wave-Particle Dualism (Proceedings of a conference in honor of Louis de Broglie, Perugia, 1982), S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (D. Reidel, Dordrecht).

    Google Scholar 

  • Shiekh, A. Y. (1985). Private communication, now incorporated in section 4.1.

  • Shiekh, A. Y. (1986), “Calculation of Nonrelativistic Scattering of Charged Scalar Particles from a Classical Aharanov-Bohm Solenoid without an Explicit Gauge Choice,”Ann. Phys. (N.Y.) 166, 299–321.

    Google Scholar 

  • Sommerfeld, A. (1896), “Mathematische Theorie der Diffraction,”Math. Ann. 47, 317–374.

    Google Scholar 

  • Sommerfeld, A. (1954),Optics (Academic Press, New York), pp. 247–272.

    Google Scholar 

  • Wait, J. R. (1960), “Diffraction Corrections to the Geometrical Optics of Low-Frequency Propagation,” inElectromagnetic Wave Propagation, M. Desirant and J. L. Michels, eds. (Academic Press, New York).

    Google Scholar 

  • Wiener, N. (1929), “The Dirichlet problem,”J. Math. Phys. 3, 127–146.

    Google Scholar 

  • Wiegel, F. W., and Boersma, J. (1983), “The Green Function for the Half-plane Barrier: Derivation from Polymer Entanglement Probabilities,”Physica A 122, pp. 325–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grant PHY84-04931.

Supported in part by SERC grant GR/D 15911.

Supported in part by a NSERC (Canada) Fellowship.

Supported in part by SERC grant B/83301669.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeWitt-Morette, C., Low, S.G., Schulman, L.S. et al. Wedges I. Found Phys 16, 311–349 (1986). https://doi.org/10.1007/BF01882691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01882691

Keywords

Navigation