Skip to main content
Log in

Transport ofl-cysteine by rat renal brush border membrane vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Brush border membranes were isolated from rat renal cortex by a divalent cation precipitation method.l-35S-cysteine uptake into the vesicles was measured by a rapid filtration method. Only minimal binding of the amino acid to the vesicles was observed. Sodium stimulatesl-cysteine uptake specifically. Anion replacement experiments, experiments in the presence of potassium/valinomycin-induced diffusion potential as well as experiments with a potential-sensitive fluorescent dye document an electrogenic sodium-dependent uptake mechanism forl-cysteine. Tracer replacement experiments as well as the fluorescence experiments indicate a preferential transport ofl-cysteine. Transport ofl-cysteine is inhibited byl-alanine andl-phenylalanine but not byl-glutamic acid and thel-basic amino acids. Initial, linear influx kinetics provide evidence for the existence of two transport sites. The results suggest (a) sodium-dependent mechanism(s) forl-cysteine shared by other neutral amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beck, J.C., Sacktor, B. 1978a. The sodium electrochemical potential mediated uphill transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 253:5531–5535

    Google Scholar 

  • Beck, J.C., Sacktor, B. 1978b. Membrane potential-sensitive fluorescence changes during Na+-dependentd-glucose transport in renal brush border membrane vesicles.J. Biol. Chem. 253:7158–7162

    Google Scholar 

  • Berner, W., Kinne, R., Murer, H. 1976. Phosphate transport into brush border membrane vesicles isolated from rat small intestine.Biochem. J. 160:467–474

    Google Scholar 

  • Biber, J., Stieger, B., Haase, W., Murer, H. 1981a. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers.Biochim. Biophys. Acta 647:169–176

    Google Scholar 

  • Biber, J., Stieger, B., Stange, G., Murer, H. 1981b. Possible interactions between the transport ofl-cystine andl-lysine in rat renal proximal tubular brush border vesicles.Pfluegers Arch. 391:R23

    Google Scholar 

  • Burckhardt, G., Kinne, R., Stange, G., Murer, H. 1980. The effects of potassium and membrane potential on sodium dependentl-glutamic acid uptake.Biochim. Biophys. Acta 599:191–201

    Google Scholar 

  • Burckhardt, G., Murer, H. 1981. A cyanine dye as indicator of membrane electrical potential differences in brush border membrane vesicles. Studies with K+ gradients and Na+/amino acid cotransport.Proc. Int. Congr. Physiol. (Budapest) 11:409–418

    Google Scholar 

  • Busse, D. 1978. Transport ofl-arginine in brush border vesicles derived from rabbit kidney cortex.Arch. Biochem. Biophys. 191:551–560

    Google Scholar 

  • Busse, D., Pohl, B., Bartel, H. 1981. Transport of cystine and cysteine in isolated brush border (b.b.) vesicles from rabbit kidney cortex.Pfluegers Arch. 391:R23

    Google Scholar 

  • Evers, J., Murer, H., Kinne, R. 1976. Phenylalanine uptake in isolated brush border vesicles.Biochim. Biophys. Acta 426:598–615

    Google Scholar 

  • Fass, S.J., Hammerman, M.R., Sacktor, B. 1977. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acidl-alanine.J. Biol. Chem. 252:583–590

    Google Scholar 

  • Frömter, E. 1979. Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules?J. Physiol (London) 288:1–31

    Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport.Biochim. Biophys. Acta 443:49–63

    Google Scholar 

  • Haase, W., Schäfer, A., Murer, H., Kinne, R. 1978. Studies on the orientation of brush border membrane vesicles.Biochem. J. 172:57–62

    Google Scholar 

  • Haramati, A., Knox, F.G. 1981. Is phosphate reabsorbed by the distal nephron?Miner. Electrolyte Metab. 6:165–173

    Google Scholar 

  • Hilden, S.A., Sacktor, B. 1981.l-arginine uptake into renal brush border membrane vesicles.Arch. Biochem. Biophys. 210:289–297

    Google Scholar 

  • Hopfer, U. 1977. Kinetics of Na+-dependentd-glucose transport.J. Supramol. Struct. 7:1–13

    Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanism of Na+-dependent glucose transport.J. Biol. Chem. 255:4453–4462

    Google Scholar 

  • Kessler, M., Tannenbaum, V., Semenza, G. 1978. A simple apparatus for performing short time (1–2 seconds) uptake measurements in small volumes: Its application tod-glucose transport studies in brush border vesicles from rabbit jejunum and ileum.Biochim. Biophys. Acta 509:348–359

    Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles. I. Characterization of the systems in the brush border microvilli and the basal-lateral plasma membranes.J. Membrane Biol. 21:375–395

    Google Scholar 

  • McNamara, P.D., Pepe, L.M., Segal, S. 1981. Cystine uptake by rat renal brush border vesicles.Biochem. J. 194:443–449

    Google Scholar 

  • Mircheff, A.K., Kippen, J., Hirayama B., Wright, E.M. 1982. Delineation of sodium stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane Biol. 64:113–122

    Google Scholar 

  • Mircheff, A.K., Os, C.H. van, Wright, E.M. 1980. Pathways for alanine transport in intestinal basal-lateral membrane vesicles.J. Membrane Biol. 52:83–92

    Google Scholar 

  • Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Natl. Acad. Sci. USA 71:484–488

    Google Scholar 

  • Murer, H., Kinne, R. 1980. The use of isolated membrane vesicles to study epithelial transport processes.J. Membrane Biol. 55:81–95

    Google Scholar 

  • Murer, H., Sigrist-Nelson, H., Hopfer, U. 1975. On the mechanisms of sugar and amino acid interaction in intestinal transport.J. Biol. Chem. 250:7392–7396

    Google Scholar 

  • Sacktor, B. 1977. Transport in membrane vesicles isolated from the mammalian kidney and intestine.Curr. Top. Bioenerg. 6:39–81

    Google Scholar 

  • Sacktor, B., Lepor, N., Scheider, G.E. 1981. Stimulation of efflux ofl-glutamate from renal brush border membrane vesicles by extravesicular potassium.Biosci. Rep. 1:709–713

    Google Scholar 

  • Samarzija, J., Frömter, E. 1982. Electrophysiological aspects of rat renal sugar and amino acid transport. III. Neutral amino acids.Pfluegers Arch 393:199–209

    Google Scholar 

  • Schafer, J.A., Barfuss, D.W. 1980. Membrane mechanism for transepithelial amino acid absorption and secretion.Am. J. Physiol. 238:F335-F346

    Google Scholar 

  • Schneider, E.G., Hammerman, M.R., Sacktor, B. 1980. Sodium gradient dependentl-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.J. Biol. Chem. 255:7650–7656

    Google Scholar 

  • Schneider, E.G., Sacktor, B. 1980. Sodium gradient dependentl-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular>extravesicular potassium gradient.J. Biol. Chem. 255:7645–7649

    Google Scholar 

  • Segal, S., McNamara, P.D., Pepe, L.M. 1977. Transport interaction of cystine and dibasic amino acids in renal brush border vesicles.Science 197:169–171

    Google Scholar 

  • Sigrist-Nelson, K., Murer, H., Hopfer, U. 1975. Active alanine transport in isolated brush border membranes.J. Biol. Chem. 250:5674–5680

    Google Scholar 

  • Silbernagl, S. 1981. Renal transport of amino acids and oligopeptides.In: Renal Transport of Organic Substances. R. Greger, F. Lang and S. Silbernagl, editors. pp. 93–117. Springer, Berlin

    Google Scholar 

  • Spears, G., Sneyd, J.G.T., Loten, E.G. 1971. A method for deriving kinetic constants for two enzymes acting on the same substrate.Biochem. J. 125:1149–1151

    Google Scholar 

  • Stevens, B.R., Ross, H.J., Wright, E.M. 1982. Multiple amino acid transport pathways in rabbit jejunal brush border vesicles.J. Membrane Biol. 66:213–225

    Google Scholar 

  • Tannenbaum, C., Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G. 1977. High affinity phlorizin binding to brush border membranes from rat small intestine: Identity with (a part of) thed-glucose transport system, dependence on the Na+-gradient, partial purification.J. Supramol. Struct. 6:519–533

    Google Scholar 

  • Thierry, J., Poujeol, P., Ripoche, P. 1981. Interactions between Na+-dependent uptake ofd-glucose, phosphate andl-alanine in rat renal brush border membrane vesicles.Biochim. Biophys. Acta 647:203–210

    Google Scholar 

  • Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G., Tannenbaum, C. 1978. Similarity in effects of Na+-gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush border of rabbit intestinal mucosal cells.J. Membrane Biol. 40:269–290

    Google Scholar 

  • Turner, S.T., Dousa, T.P. 1982. Differences in transport capacity for phosphate (P i) of luminal brush border membrane (BBM) prepared from subcapsular (SC) and juxtamedullary (JM) cortex.Kidney Int. 21:141

    Google Scholar 

  • Turner, R.J., Moran, A. 1982. Heterogeneity of sodium dependentd-glucose transport sites along the proximal tubule: Evidence from vesicle studies.Am. J. Physiol. 242:F406-F414

    Google Scholar 

  • Turner, R.J., Silverman, M. 1978. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.Biochim. Biophys. Acta 511:470–486

    Google Scholar 

  • Turner, R.J., Silverman, M. 1980. Testing carrier models of cotransport using the binding kinetics of non-transported competitive inhibitors.Biochim. Biophys. Acta 596:272–291

    Google Scholar 

  • Ullrich, K.J. 1979. Sugar, amino acid and Na+ cotransport in the proximal tubule.Annu. Rev. Physiol. 41:181–195

    Google Scholar 

  • Völkl, H., Silbernagl, S. 1982a. Mutual inhibition ofl-cystine/l-cysteine and other neutral amino acids during tubular reabsorption. A microperfusion study in rat kidney.Pfleugers Arch. 395:190–195

    Google Scholar 

  • Völkl, H., Silbernagl, S. 1982b. Reexamination of the interplay between dibasic amino acids andl-cysteine during tubular reabsorption.Pfleugers Arch. 395:196–200

    Google Scholar 

  • Weiss, S.D., McNamara, P.D., Segal, S. 1981. Uptake of proline by renal brush border vesicles. A mathematical analysis.J. Theor. Biol. 93:597–608

    Google Scholar 

  • Wright, S.H., Krasne, S.K., Kippen, J., Wright, E.M. 1981. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluoresence of a potential sensitive cyanine dye.Biochim. Biophys. Acta 640:767–778

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stieger, B., Stange, G., Biber, J. et al. Transport ofl-cysteine by rat renal brush border membrane vesicles. J. Membrain Biol. 73, 25–37 (1983). https://doi.org/10.1007/BF01870338

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870338

Key Words

Navigation