Skip to main content
Log in

Differential invariants in a general differential geometry

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. D. Michal. Abstract Covariant Vector Fields in a General Absolute Calculus, American Journal of Math.59 (1937), pp. 306–314.

    Google Scholar 

  2. . Postulates for Linear Connections in Abstract Vector Spaces, Annali di Matematica15 (1936), pp. 197–220.

    Google Scholar 

  3. . General Tensor Analysis, Bull. of Amer. Math. Soc.43 (1937), pp. 394–401.

    Google Scholar 

  4. . Differential Geometries of Function Space, Proc. of National Academy of Sciences16 (Jan., 1930), pp. 88–94.

    Google Scholar 

  5. . Affinely Connected Function Space Manifolds, American Journal of Mathematics50 (1928), pp. 473–517.

    Google Scholar 

  6. . Riemannian Differential Geometry In Abstract Spaces. Proceedings of the National Academy of Sciences21 (Sept., 1935), pp. 526–529.

    Google Scholar 

  7. A. D. Michal. General Riemannian Differential Geometry, to be published elsewhere.

  8. A. D. Michal, I. E. Highberg and A. E. Taylor. Abstract Euclidean Spaces with Independently Postulated Analytical and Geometrical Metrics, Annali Della R. Scuola Normale Superiore di Pisa (2)6 (1937), p. 117–148.

    Google Scholar 

  9. A. D. Michal and D. H. Hyers. Second Order Differential Equations With Two Point Boundary Conditions In General Analysis, American Journal of Math.58 (1936), pp. 646–660.

    Google Scholar 

  10. . Theory and Applications of Abstract Normal Coordinates in a General Differential Geometry, Annali Della R. Scuola Normale Superiore di Pisa (2)7 (1938), p. 157–176.

    Google Scholar 

  11. T. H. Hildebrandt and L. M. Graves. Implicit Functions and Their Differentials in General Analysis, Transactions of American Mat. Soc.29 (1927), p. 127–153.

    Google Scholar 

  12. Erhard Schmidt. Über die Auflösung der nichtlinearen Integralgleichung und die Verzweigung. ihrer Lösungen, Math. Annalen65 (1908), p. 370–399.

    Google Scholar 

  13. M. Kerner. La Différentielle dans l'Analyse Générale, Annals of Mathematics34 (1933), p. 546–572.

    Google Scholar 

  14. B. Riemann. Commentatio Mathematica, Werke, 2 nd ed., p. 391.

  15. D. Hilbert. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (1910).

  16. M. H. Stone. Linear Transformations in Hilbert Spaces (1932).

  17. P. Alexandroff and H. Hopf. Topologie, vol. I (1935).

  18. S. Banach. Théorie des Opérations Linéaires (1932).

  19. C. Carathéodory. Variationsrechnung und partielle Differentialgleichungen erster ordnung (1935).

  20. M. Fréchet. La notion de Différentielle dans L'Analyse Génerale, Annales Sc. de L'Ecole Normale Superieure42 (1925), p. 293–323.

    Google Scholar 

  21. O. Veblen and J. H. C. Whitehead. The Foundations of Differential Geometry (1932).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented to the American Math. Soc., Sept. 1936 and Nov. 1936. See Abstracts 348 and 456, Bulletin of Am. Math. Soc.42 (1936), p. 631 and p. 822.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michal, A.D., Hyers, D.H. Differential invariants in a general differential geometry. Math. Ann. 116, 310–333 (1939). https://doi.org/10.1007/BF01597359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01597359

Keywords

Navigation