Skip to main content
Log in

Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The biosorption of uranium, strontium and caesium by pelleted mycelium of two species of fungi,Rhizopus arrhizus andPenicillium chrysogenum and immobilizedSaccharomyces cerevisiae was evaluated in both batch and continuous flow systems where the presence of competing cations affected accumulation. The uptake mechanism for the pelleted fungal biomass differed from that of the immobilized yeast, the former being metabolism-independent biosorption of the metals while, in the presence of glucose, uptake in the latter organism was biphasic, surface biosorption being followed by energy-dependent influx. Removal of surface-bound metals was achieved by eluting with mineral acids or carbonate/bicarbonate solutions; a high degree of metal recovery was observed for uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baes, C.F. and R.E. Mesmer. 1976. The Hydrolysis of Cations, John Wiley and Sons, New York.

    Google Scholar 

  2. Bond, A.M. 1980. Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New York.

    Google Scholar 

  3. Borst-Pauwels, G.W.F.H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 88–127.

    PubMed  Google Scholar 

  4. Brierley, J.A. and C.L. Brierley. 1983. Biological accumulation of some heavy metals-biotechnological applications. In: Biomineralisation and Biological Metal Accumulation (Westbroek, P. and E.W. de Jong, eds.), pp. 499–509, Reidel, Dordrecht.

    Google Scholar 

  5. Brierley, J.A., G.M. Goyak and C.L. Brierley. 1986. Considerations for commercial use of natural products for metal recovery. In: Immobilization of Ions by Biosorption. (Eccles, H. and S. Hunt, eds.) pp. 105–117, Ellis Horwood, Chichester.

    Google Scholar 

  6. Cheetham, P.S.J. and C. Bucke. 1984. Immobilization of microbial cells and their use in wastewater treatment. In: Microbiological Methods for Environmental Biotechnology (Grainger, J.M. and J.M. Lynch, eds.), pp. 219–234, Academic Press, London.

    Google Scholar 

  7. de Rome, L. and G.M. Gadd 1987. Copper adsorption byRhizopus arrhizus, Cladosporium resinae andPenicillium chrysogenum. Appl. Microbiol. Biotechnol. 26: 84–90.

    Google Scholar 

  8. Fuhrmann, G.F. and A. Rothstein. 1968. The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim. Biophys. Acta 163: 325–330.

    PubMed  Google Scholar 

  9. Gadd, G.M. 1986. Fungal responses towards heavy metals. In: Microbes in Extreme Environments (Herbert, R.A. and G.A. Codd, eds.), pp. 83–110, Academic Press, London.

    Google Scholar 

  10. Gadd, G.M. 1988. Accumulation of metals by microorganisms and algae. In: Biotechnology Vol. 6b. Special Microbial Processes (Rehm, H.-J., ed.), pp. 401–433, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  11. Gadd, G.M. and L. de Rome. 1988. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29: 610–617.

    Google Scholar 

  12. Gadd, G.M. and C. White. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Metal-Microbe Interactions (Poole, R.K. and G.M. Gadd, eds.), pp. 19–38, IRL Press, Oxford.

    Google Scholar 

  13. Gadd, G.M., C. White and L. de Rome. 1988. Heavy metal and radionuclide uptake by fungi and yeasts. In: Biohydrometallurgy, Proceedings of the International Symposium, Warwick, 1987 (Norris, P.R. and D.P. Kelly, eds.), pp. 421–435, Science and Technology Letters, Kew, Surrey.

    Google Scholar 

  14. Horikoshi, T., A. Nakajima and T. Sakaguchi, 1981. Studies on the accumulation of heavy metals in biological systems. XIX. Accumulation of uranium by microorganisms. Appl. Microbiol. Biotechnol. 12: 90–96.

    Google Scholar 

  15. Jones, R.P. and G.M. Gadd. 1990. Ionic nutrition of yeast-the physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol. 12: 402–418.

    Google Scholar 

  16. Klein, J., U. Hackel, P. Schara, P. Washausen, F. Wagner and C.K.A. Martin. 1978. Polymer entrapment of microbial cells: preparation and reactivity of catalytic systems. Enzyme Eng. 4: 339–341.

    Google Scholar 

  17. Lund, W. 1986. Electrochemical methods and their limitations for the determination of metal species in natural waters. In: The Importance of Chemical Speciation in Environmental Processes (Bernhard, M., F.E. Brinckman and P.J. Sadler, eds.), pp. 533–561, Springer-Verlag, Berlin.

    Google Scholar 

  18. Macaskie, L.E. and A.C.R. Dean. 1989. Microbial metabolism, desolubilization and desorption of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes. In: Biological Waste Treatment (Mizrahi, A., ed.), pp. 159–201, Alan R. Liss Inc., New York.

    Google Scholar 

  19. Nakajima, A. and T. Sakaguchi. 1986. Selective accumulation of heavy metals by microorganisms. Appl. Microbiol. Biotechnol. 24: 59–64.

    Google Scholar 

  20. Norris, P.R. and D.P. Kelly. 1977. Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol. 99: 317–324.

    Google Scholar 

  21. Norris, P.R. and D.P. Kelly. 1979. Accumulation of metals by bacteria and yeasts. Dev. Ind. Microbiol. 20: 299–308.

    Google Scholar 

  22. Phaff, H.J. 1981. Industrial Microbiology and the Advent of Genetic Engineering, Scientific American, San Francisco.

    Google Scholar 

  23. Roomans, G.M., A.P.R. Theuvenet, T.P.R. Van den Berg and G.W.F.H. Borst-Pauwels. 1979. Kinetics of Ca2+ and Sr2+ uptake by yeast. Effect of pH, cations and phosphate. Biochim. Biophys. Acta 551: 187–196.

    PubMed  Google Scholar 

  24. Rothstein, A. and R. Meier. 1951. The relationship of the cell surface to metabolism. VI. The chemical nature of uranium-complexing groups of the cell surface. J. Cell. Comp. Physiol. 38: 245–270.

    Google Scholar 

  25. Rothstein, A., A.D. Hayes, D. Jennings and D. Hooper. 1958. The active transport of Mg2+ and Mn2+ into the yeast cell. J. Gen. Physiol. 41: 585–594.

    PubMed  Google Scholar 

  26. Sakaguchi, T., T. Horikoshi and A. Nakajima 1978. Studies on the accumulation of heavy metal elements in biological systems. VI. Uptake of uranium from seawater by microalgae. J. Ferment. Technol. 56: 561–565.

    Google Scholar 

  27. Shumate. S.E. and G.W. Strandberg. 1985. Accumulation of metals by microbial cells. In: Comprehensive Biotechnology Vol. 4 (Moo-Yung, M., C.N. Robinson and J.A. Howell, eds.), pp. 235–247, Pergamon Press, New York.

    Google Scholar 

  28. Strandberg, G.W., S.E. Shumate and J.R. Parrott. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245.

    Google Scholar 

  29. Tobin, J.M., D.G. Cooper and R.J. Neufeld. 1984. Uptake of metal ions byRhizopus arrhizus biomass. Appl. Environ. Microbiol. 47: 821–824.

    Google Scholar 

  30. Tsezos, M. 1984. Recovery of uranium from biological adsorbents-desorption equilibrium. Biotechnol. Bioeng. 26: 973–981.

    Google Scholar 

  31. Tsezos, M. 1986. Adsorption by microbial biomass as a process for removal of ions from process or waste solutions. In: Immobilization of Ions by Biosorption. (Eccles, H. and S. Hunt, eds.), pp. 201–218, Ellis Horwood, Chichester.

    Google Scholar 

  32. Tsezos, M. and B. Volesky. 1981. Biosorption of uranium and thorium. Biotechnol. Bioeng. 23: 583–604.

    Google Scholar 

  33. Tsezos, M. and B. Volesky. 1982. The mechanism of uranium biosorption byRhizopus arrhizus. Biotechnol. Bioeng. 24: 385–401.

    Google Scholar 

  34. Whitaker, A. 1987. Fungal pellets-present and future applications. Int. Ind. Biotechnol. 7: 285–289.

    Google Scholar 

  35. White, C. and G.M. Gadd. 1987. The uptake and cellular distribution of zinc inSaccharomyces cerevisiae. J. Gen. Microbiol. 133: 727–737.

    Google Scholar 

  36. Yakubu, N.A. and A.W.L. Dudeney. 1986. Biosorption of uranium withAspergillus niger. In: Immobilization of Ions by Biosorption (Eccles, H. and S. Hunt, eds.), pp. 183–200, Ellis Horwood, Chichester.

    Google Scholar 

  37. Zajic, J.E. and Y.S. Chiu. 1972. Recovery of heavy metals by microbes. Dev. Ind. Microbiol. 13: 91–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rome, L., Gadd, G.M. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. Journal of Industrial Microbiology 7, 97–104 (1991). https://doi.org/10.1007/BF01576071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576071

Key words

Navigation