Skip to main content
Log in

Specific inhibition of phosphate transport in mitochondria by N-ethylmaleimide

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

N-ethylmaleimide (NEM), a reagent that alkylates free sulfhydryl groups, was shown to be a highly effective inhibitor of the following coupled mitochondrial processes: oxidative phosphorylation, ATP-32Pi exchange, Pi-induced light scattering and configurational changes, State III respiration, valinomycin-induced translocation of potassium with Pi as the anion, and calcium accumulation in presence of Pi. However, NEM was less effective or ineffective in inhibiting some processes that do not require inorganic Pi, namely electron transfer and ATPase activity, ADP binding, energized light scattering changes induced by arsenate and nonenergized light scattering changes induced by acetate. The rate of oxidative phosphorylation and of ATP-32Pi exchange was normal in ETPH particles prepared from NEM-treated mitochondria. Also NEM, even et levels 2–3 times greater than those required to inhibit oxidative phosphorylation in intact mitochondria, did not inhibit coupled processes in submitochondrial particles. We are proposing that NEM alkylates sulfhydryl groups in the mitochondrion that modulate Pi translocation, and that the suppression of Pi translocation blocks oxidative phosphorylation, the Pi-dependent energized configurational change in mitochondria and Pi-dependent transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Hansford and J. B. Chappell,Biochem. Biophys. Res. Commun.,30 (1968) 643.

    PubMed  Google Scholar 

  2. A. Fonyo,Biochem. Biophys. Res. Commun., 32 (1968) 624.

    PubMed  Google Scholar 

  3. D. D. Tyler,Biochem. J.,107 (1968) 121.

    PubMed  Google Scholar 

  4. S. Papa, N. W. Lofrumento, M. Loglisci and E. Quagliarello,Biochem. Biophys. Acta,189 (1969) 311.

    PubMed  Google Scholar 

  5. A. J. Meyer and J. M. Tager,Biochim. Biophys. Acta 189 (1969) 136.

    Google Scholar 

  6. A. Tulp and K. Van Dam,Biochim. Biophys. Acta,189 (1969) 337.

    PubMed  Google Scholar 

  7. N. Haugaard, N. M. Lee, R. Kostrzewa, R. S. Harris and E. S. Haugaard,Biochim. Biophys. Acta,172 (1969) 198.

    PubMed  Google Scholar 

  8. M. J. Lee, R. A. Harris, T. Wakabayashi and D. E. Green,Bioenergetics,2 (1971) 13.

    Google Scholar 

  9. F. L. Crane, J. L. Glenn and D. E. Green,Biochim. Biophys. Acta,22 (1956) 475.

    PubMed  Google Scholar 

  10. Y. Hatefi and R. L. Lester,Biochim. Biophys. Acta,27 (1958) 83.

    PubMed  Google Scholar 

  11. M. Hansen and A. L. Smith,Biochim. Biophys. Acta,81 (1964) 214.

    Google Scholar 

  12. A. G. Gornall, C. H. Bardawill and M. M. David,J. Biol. Chem.,177 (1949) 751.

    Google Scholar 

  13. O. Lindberg and L. Ernster, in:Methods in Biochemical Analysis, Glick (ed.), Interscience Publishing Co., Inc., New York, 1956, Vol. III, p. 1.

    Google Scholar 

  14. Packard Technical Bulletin, no. 3 (1961).

  15. H. Takahashi,Japanese Biochem. Soc.,26 (1955) 690.

    Google Scholar 

  16. G. A. Blondin and D. E. Green,Arch. Biochem. Biophys.,132 (1969) 509.

    PubMed  Google Scholar 

  17. J. Sedlak and R. H. Lindsey,Anal. Chem.,25 (1968) 192.

    Google Scholar 

  18. P. H. W. Butterworth, H. Baum and J. W. Porter,Arch. Biochem. Biophys.,118 (1967) 716.

    PubMed  Google Scholar 

  19. D. W. Allmann, T. Wakabayashi, E. F. Korman and D. E. Green,Bioenergetics,1 (1970) 73.

    Google Scholar 

  20. M. V. Riley and A. L. Lehninger,J. Biol. Chem.,239 (1964).

  21. R. E. Benesch, H. A. Lardy and R. Benesch,J. Biol. Chem.,216 (1955) 663.

    PubMed  Google Scholar 

  22. G. P. Brierley, V. A. Knight and G. T. Settlemire,J. Biol. Chem. 243 (1968) 5035.

    PubMed  Google Scholar 

  23. H. M. Klouwen,Arch. Biochem. Biophys.,99 (1962) 116.

    PubMed  Google Scholar 

  24. H. A. Lardy and H. Wellman,J. Biol. Chem.,195 (1952) 215.

    PubMed  Google Scholar 

  25. D. E. Green, J. Asai, R. A. Harris and J. T. Penniston,Arch. Biochem. Biophys.,125 (1968) 684.

    PubMed  Google Scholar 

  26. J. D. McGivan and J. B. Chappell,Biochem. J.,127 (1972) 3.

    Google Scholar 

  27. D. E. Green and R. F. Brucker,Bio Science,22 (1972) 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from the Department of Biochemistry, Cancer Institute Okayama University Medical School, Okayama, Japan.

On leave of absence from the Department of Pathology, Nagoya University Medical School, Nagoya, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatase, O., Wakabayashi, T., Allmann, D.W. et al. Specific inhibition of phosphate transport in mitochondria by N-ethylmaleimide. J Bioenerg Biomembr 5, 1–15 (1973). https://doi.org/10.1007/BF01458353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458353

Keywords

Navigation