Skip to main content
Log in

Charakterisierung niedermolekularer Zinkspezies in handelsüblichen pflanzlichen Lebensmitteln

Characterization of low molecular weight zinc species in ordinary vegetable foodstuffs

  • Originalarbeit
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Abstract

In six different ordinary vegetables, namely kohlrabi, Chinese cabbage, chard, leek, spinach and Jerusalem artichoke, zinc was mainly found as low molecular weight species. In the present study, these important zinc compounds are further investigated. The determinations of the metal are performed by ET-AAS. The zinc complexes of all vegetables are anionic at pH 8.0 and show similar elution behaviour in gel permeation and anion exchange chromatography. Consequently, a great resemblance in structure between the low molecular weight zinc species from the different vegetables can be supposed. Exemplary, the zinc complexes of kohlrabi and Chinese cabbage are further examined. In more purified samples of these vegetables compared to zinc neither stoichiometric amounts of free protein amino acids nor nicotianamine, free malic acid, citric acid or phytic acid have been detected. Mainly glutamic acid is found in molar excess to zinc after acid hydrolysis in both cases. The cysteine contents of both zinc-binding fractions are very low. Conclusively, the wellknown γ-glutamylcysteinyl-glycines (phytochelatines) can not be responsible for the bonding of zinc in both ordinary vegetables. We suppose that zinc in kohlrabi and Chinese cabbage is bound to a glutamic acid derivative unknown as yet, possibly a malic acid ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Kruse-Jarres JD (1990) VitaMinSpur 5: 6–17

    Google Scholar 

  2. Schmidt K, Bayer W (1983) Die Bedeutung des Zinks in der Medizin. Verlag für Medizin, Dr. E. Fischer, Heidelberg

    Google Scholar 

  3. Bernhard M, Brinckman FE, Sadler PJ (1986) The importance of chemical speciation in environmental processes, Dahlem Konferenzen. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Deutsche Gesellschaft für Ernährung (Hrsg) (1984) Ernährungsbericht 1984, DGE Frankfurt/Main

    Google Scholar 

  5. Recommended Dietary Allowances (1989) 10th edn. National Academy Press, Washington DC, S 207

  6. Pfannhauser W (1988) Essentielle Spurenelemente in der Nahrung. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Elmadfa I, Leitzmann C (1990) Ernährung des Menschen. 2. überarb. Aufl., Ulmer, Stuttgart, S 204

    Google Scholar 

  8. Grill E, Winnacker E-L, Zenk MH (1985) Science 230: 674–676

    Google Scholar 

  9. Grill E, Zenk MH (1989) Chemie in unserer Zeit 23: 193–199

    Google Scholar 

  10. Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Proc Natl Acad Sci USA 86: 6838–6842

    Google Scholar 

  11. Jackson PJ, Roth EJ, McLure PR, Naranjo CM (1984) Plant Physiol 75: 914–918

    Google Scholar 

  12. Jackson PJ, Naranjo CM, McLure PR, Roth EJ (1985) Cellular and molecular biology of plant stress. In: Key JL, Kosuge T (eds) Proceedings of ARCO Plant Cell Research Institute. Liss, New York

    Google Scholar 

  13. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Proc Natl Acad Sci USA 84: 6619–6623

    Google Scholar 

  14. Hayashi Y, Nakagawa CW, Murasugi A (1986) Environ Health Perspec 65: 13–19

    Google Scholar 

  15. Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Arch Microbiol 150: 197–202

    Google Scholar 

  16. Vögli-Lange R, Wagner GJ (1990) Plant Physiol 92: 1086–1093

    Google Scholar 

  17. Walker CD, Welch RM (1987) J Agric Food Chem 35: 721–727

    Google Scholar 

  18. Klapheck S, Schlunz S, Bergmann L (1995) Plant Physiol 107: 515–521

    Google Scholar 

  19. Zhou J, Goldsbrough PB (1994) Plant Cell 6: 875–884

    Google Scholar 

  20. Kinnersley AM (1993) Plant Growth Regul 12: 207–218

    Google Scholar 

  21. Kneer R, Zenk MH (1992) Phytochem 31: 2663–2667

    Google Scholar 

  22. Abrahamson SL, Speiser DM, Ow DW (1992) Anal Biochem 200: 239–243

    Google Scholar 

  23. Howden R, Cobbett CS (1992) Plant Physiol 100: 100–107

    Google Scholar 

  24. Jackson PP, Robinson NJ, Whitton BA (1991) Environ Exp Bot 31: 359–366

    Google Scholar 

  25. Mathys W (1977) Physiol Plant 40: 130–136

    Google Scholar 

  26. Tomsett AB, Thurman DA (1988) Plant Cell and Environ 11: 383–394

    Google Scholar 

  27. Krotz RM, Evangelou BP, Wagner GJ (1989) Plant Physiol 91: 780–787

    Google Scholar 

  28. Godbold DL, Horst WJ, Collin JC, Thurman DA, Marschner H (1984) J Plant Physiol 116: 59–69

    Google Scholar 

  29. White MC, Decker AM, Chaney RL (1981) Plant Physiol 67: 292–300

    Google Scholar 

  30. White MC, Baker FD, Chaney RL, Decker AM (1981) Plant Physiol 67: 301–310

    Google Scholar 

  31. Thurman BA, Rankin JL (1982) New Phytol 91: 629–635

    Google Scholar 

  32. Van Steveninck RFM, Van Steveninck ME, Fernando DR, Horst WJ, Marscher H (1987) J Plant Physiol 131: 247–257

    Google Scholar 

  33. Van Steveninck RFM, Babare A, Fernando DR, Van Steveninck ME (1994) Plant Soil 167: 157–164

    Google Scholar 

  34. Van Steveninck RFM, Babare A, Fernando DR, Van Steveninck ME (1993) Dev Plant Soil Sci 54: 775–778

    Google Scholar 

  35. Van Steveninck RFM, Babare A, Fernando DR, Van Steveninck ME (1993) Plant Soil 155/156: 525–528

    Google Scholar 

  36. Gomah AM, Davies RI (1974) Plant and Soil 40: 1–19

    Google Scholar 

  37. Zhang F, Romheld V, Marschner H (1991) J Plant Nutr 14: 675–686

    Google Scholar 

  38. Schreiber K (1990) Mittbl Chem Ges 37: 1577–1579

    Google Scholar 

  39. Günther K, Waldner H (1992) Anal Chim Acta 259: 165–173

    Google Scholar 

  40. Günther K, von Bohlen A, Strompen C (1995) Anal Chim Acta 309: 327–332

    Google Scholar 

  41. Schneider S (1993) Diplom-Arbeit, Universität Bonn

  42. Slavin W, Carnrick GR, Manning DC, Pruszkowska E (1983) At Spectrosc 4: 69; Perkin-Elmer Handbuch HGA-400 Subsection 1, Recommended conditions for standard graphite furnance AAS (STPF conditions)

    Google Scholar 

  43. Ozols J (1990) Methods in Enzymology 182: 587–601

    Google Scholar 

  44. Hancock WS (Ed) (1984), CRC Handbook of HPLC for separation of Amino Acids, Peptides and Proteins, Volume II. CRC Press Inc, Boca Raton, Florida

    Google Scholar 

  45. Stryer L (1990) Biochemie. Spektrum der Wissenschaft, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Gewidmet dem Andenken an Prof. Dr. Konrad Pfeilsticker, 1970–1994 Ordinarius für Lebensmittelwissenschaft und Lebensmittelchemie an der Universität Bonn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldner, H., Günther, K. Charakterisierung niedermolekularer Zinkspezies in handelsüblichen pflanzlichen Lebensmitteln. Z Lebensm Unters Forch 202, 256–262 (1996). https://doi.org/10.1007/BF01263550

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263550

Key words

Navigation