Skip to main content
Log in

MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The MHD flow and heat transfer of a non-Newtonian power-law fluid over a continuously moving surface with a parallel free stream have been investigated. The partial differential equations governing the non-similar flow have been solved numerically using an implicit finite-difference scheme. The skin friction and heat-transfer coefficients increase with the magnetic parameter, and they are more for the pseudoplastic fluid than for the dilatant fluid. The heat-transfer coefficient increases significantly with the Prandtl number. The gradient of the velocity at the surface is negative when the wall velocity is greater than the free stream velocity, and it is positive when the wall velocity is less than the free stream velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakiadis, B. C.: Boundary layer behaviour on continuous solid surfaces I; The boundary layer equations for two-dimensional and axisymmetric flows. AIChE J.7, 26–28 (1961).

    Google Scholar 

  2. Sakiadis, B. C.: Boundary layer behaviour on continous solid surfaces II; The boundary layer on a continous flat surface. AIChE J.7, 221–225 (1961).

    Google Scholar 

  3. Sakiadis, B. C.: Boundary layer behaviour on continuous solid surfaces III; The boundary layer on a continuous cylindrical surface. AIChE J.7, 467–472 (1961).

    Google Scholar 

  4. Crane, L. J.: Flow past a stretching plate. ZAMP21, 645–647 (1970).

    Google Scholar 

  5. Erickson, L. E., Fan, L. T., Fox, V. G.: Heat and mass transfer on a moving continuous flat plate with suction and blowing. Ind. Eng. Chem. Fund.5, 19–25 (1966).

    Google Scholar 

  6. Griffin, J. F., Throne, J. L.: On thermal boundary layer growth on continuous moving belts. Am. Inst. Chem. Eng. J.13, 1210–1211 (1967).

    Google Scholar 

  7. Tsou, F. K., Sparrow, E. M., Goldstein, R. J.: Flow and heat transfer in the boundary layer on a continuously moving surface. Int. J. Heat Mass Transfer10, 219–235 (1967).

    Google Scholar 

  8. Gupta, P. S., Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction and blowing. Canad. J. Chem. Engng55, 744–746 (1977).

    Google Scholar 

  9. Chakrabarti, A., Gupta, A. S.: Hydromagnetic flow, heat and mass transfer over a stretching sheet. Quart. Appl. Math.33, 73–78 (1979).

    Google Scholar 

  10. Carragher, P., Crane, L. J.: Heat transfer on a continuous stretching sheet. ZAMM62, 564–565 (1982).

    Google Scholar 

  11. Dutta, B. K., Roy, P., Gupta, A. S.: Temperature field in flow near a stretching sheet with uniform heat flux. Int. Comm. Heat Mass Transfer28, 1234–1237 (1985).

    Google Scholar 

  12. Dutta, B. K.: Heat transfer from a stretching sheet with uniform suction or blowing. Acta Mech.78, 255–262 (1989).

    Google Scholar 

  13. Andersson, H. I.: An exact solution of the Navier-Stokes equations for MHD flow. Acta Mech.113, 241–244 (1995).

    Google Scholar 

  14. Chiam, T. C.: Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet. Int. Comm. Heat Mass Transfer23, 239–248 (1996).

    Google Scholar 

  15. Vajravelu, K., Hadjinicolaou, A.: Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. Int. J. Engng Sci.35, 1237–1244 (1997).

    Google Scholar 

  16. Jeng, D. R., Chang, T. C. A., DeWitt, K. J.: Momentum and heat transfer on a continuous moving surface. J. Heat Transfer108, 532–537 (1986).

    Google Scholar 

  17. Chiam, T. C.: Magnetohydrodynamic boundary layer flow due to a continuously moving plate. Computer Math. Appl26, 1–7 (1993).

    Google Scholar 

  18. Sarpakaya, T.: Flow of non-Newtonian fluids in a magnetic field. AIChE J.7, 324–328 (1961).

    Google Scholar 

  19. Sapunkov, Ya. G.: Self-similar solutions of non-Newtonian fluid boundary layer in MHD. Fluid Dynamics2, 42–47 (1967).

    Google Scholar 

  20. Vujanovic, B., Strauss, A. M., Djukic, D.: A variational solution of Rayleigh problem for power-law non-Newtonian conductive fluid. Ing. Arch.41, 381–386 (1972).

    Google Scholar 

  21. Djukic, D. S.: On the use of Crocco equation for the flow of power-law fluids in a transverse magnetic field AIChE J.19, 1159–1163 (1973).

    Google Scholar 

  22. Djukic, D. S.: Hiemenz magnetic flow of power-law fluids. J. Appl. Mech.4, 822–823 (1974).

    Google Scholar 

  23. Andersson, H. I., Bach, K. H., Dandapat, B. S. Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int. J. Non-Linear Mech.27, 929–936 (1992).

    Google Scholar 

  24. Cebeci, T., Smith, A. M. O.: Analysis of turbulent boundary layers. New York: Academic Press 1974.

    Google Scholar 

  25. Cebeci, T., Bradshaw, P.: Physical and computational aspects of convective heat transfer. New York: Springer 1984.

    Google Scholar 

  26. Acrivos, A., Shah, M. J., Petersen, E. E.: Momentum and heat transfer in laminar boundary layer flow of non-Newtonian fluids past external surfaces. AIChE J.6, 312–317 (1960).

    Google Scholar 

  27. Lin, H. T., Huang, S. F.: Flow and heat transfer of plane surfaces moving in parallel and reversely in the free stream. Int. J. Heat Mass Transfer37, 333–336 (1994).

    Google Scholar 

  28. Eringen, A. C., Maugin, G. A.: Electrodynamics of continua. Vol. II. Berlin: Springer 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, M., Nath, G. MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream. Acta Mechanica 146, 139–150 (2001). https://doi.org/10.1007/BF01246729

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01246729

Keywords

Navigation