Skip to main content
Log in

TMX upgrade magnet system: Design characteristics and physics considerations

  • Contributed Papers
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Summarized in this article are the design characteristics of the magnet-system configuration constructed for use in the modified Tandem Mirror Experiment (TMX Upgrade), and a description of the resulting vacuum magnetic field. Many engineering and physics considerations and limitations governed the design. Several of the physics issues are discussed here, including single-particle drift surfaces and adiabaticity, central-cell resonant radial transport, magnetohydrodynamic stability analysis, and finite-beta equilibrium. The described design procedures can be applied to other tandem-mirror experiments or reactor studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radial-displacement parameter (or reflection function), cm

B :

magnetic-field vector,T

¦B¦ orB :

magnetic-field magnitude, T (or G)

D 0,D 1 :

resonant-radial-transport diffusion coefficients, cm2/s

E :

electric-field vector, kV/m

L :

end points (±) of the machine, whereP vanishes, m

L s :

effective length of the solenoidal central cell, used in the radial-diffusion-coefficient calculations, m

n :

plasma species density, cm−3

P :

plasma-particle pressure (often written equal tonkT, wherek is the Boltzmann constant andT here is in K), erg/cm3

P :

B-dependent part of plasma-particle pressure when written in separable form, erg/cm3

q :

elementary charge

r :

radius in cylindrical-coordinate system, cm or m

r c :

central-cell plasma radius, cm

R eff :

effective radial scale length for estimating central-cell gradients, cm

R eff :

ratio of maximum-to-minimum magneticfield magnitude experienced by a trapped particle during its motion

T :

particle energy or “temperature,” keV or ergs

T φ :

an effective energy used for calculating central-cell potential gradients, keV

gv :

particle velocity, cm/s

W :

particle kinetic energy, keV

x, y, z :

Cartesian coordinates, cm or m

α:

azimuthal angular coordinate (Sections 5 and 6 only), deg

β :

the plasma “beta” in this article, where β ≡ β =8πP /B 2, the ratio of the plasma-particle perpendicular pressure (P ) to the pressure of the confining vacuum magnetic field (B2/8π)

β p ,β c :

beta values at the center of the end and central cells, respectively

ɛ:

ion kinetic plus potential energy, keV

θ :

pitch angle, the angle between the particle velocity vector and the magnetic-field direction, deg

θ inj, θ lc :

pitch angles at the end-cell midplane of the injected particles and of the loss cone, rad

κ:

magnetic-field-line curvature vector, cm−1

κgy, κα :

components of κ, with dimensions cm−2. T−1 and rad−1, respectively

μ :

particle magnetic moment, keV/T

vψ,v z :

azimuthal-precession and axial-reflection (one cycle includes a bounce at each end of the confining cell) frequencies, kHzv(ψ)ψ-dependent part of plasma-particle pressure when written in separable form (Sections 5 and 6 only)

τ ad :

adiabatic lifetime, s

τ1, τ2 :

resonant-radial-transport diffusion lifetimes, ms

ψ(r) :

electric potential at the central-cell midplane, relative to ground, kV

ψ e :

ψ(r) atr=0, kV

ψ:

used in two different ways: (1) polar angular coordinate in cylindrical-coordinate system, deg; (2) principal flux coordinate (Sections 5 and 6 only), cm2 · T

ω :

eigenfrequency or growth rate for ballooning instability mode, rad/s

c :

central cell

e :

electron plasma species

i :

ion plasma species

p :

end cell (or “plug”)

⊥, ∥:

referenced to the magnetic-field direction

References

  1. F. H. Coensgen, T. C. Simonen, A. K. Chargin, and B. G. Logan,TMX Upgrade Major Project Proposal, Lawrence Livermore National Laboratory Report LLL-Prop-172 (1980).

  2. F. H. Coensgen, C. A. Andersen, T. A. Casper, J. F. Clauser, W. C. Condit, D. L. Correll, W. F. Cummins, J. C. Davis, R. P. Drake, J. H. Foote, A. H. Futch, R. K. Goodman, D. P. Grubb, G. A. Hallock, R. S. Hornady, A. L. Hunt, B. G. Logan, R. H. Hunger, W. E. Nexsen, T. C. Simonen, D. R. Slaughter, B. W. Stallard, and O. T. Strand, Electrostatic plasma-confinement experiments in a tandem mirror system,Phys. Rev. Lett. 44:1132 (1980).

    Google Scholar 

  3. TMX Group,Summary of Results from the Tandem Mirror Experiment (TMX), T. C. Simonen, ed., Lawrence Livermore National Laboratory Report UCRL-53120 (1981).

  4. D. E. Baldwin and B. G. Logan, Improved tandem mirror fusion reactor,Phys. Rev. Lett. 43:1318 (1979).

    Google Scholar 

  5. G. A. Carlson, B. Arfin, W. L. Barr, B. M. Boghosian, J. L. Erickson, J. H. Fink, G. W. Hamilton, B. G. Logan, J. O. Myall, and W. S. Neef, Jr.,Tandem Mirror Reactor with Thermal Barriers, Lawrence Livermore National Laboratory Report UCRL-52836 (1979).

  6. E. B. Hooper, Jr., Magnetic field errors in quadrupole tandem mirrors,Nucl. Technol./Fusion. 3:137 (1983).

    Google Scholar 

  7. R. L. Wong, TMX Upgrade magnet set geometry design, inProc. 9th Symp. on Engineering Problems of Fusion Research, C. K. Choi, ed., IEEE 81 CH 1715-2 NFS (1981), p. 531.

  8. W. A. Perkins and D. Fuss,MAFCO II-A Code for Calculating a Guiding Center Trajectory of a Particle in Magnetic and Electric Fields, Lawrence Livermore National Laboratory Report UCRL-50438 (1968).

  9. J. H. Foote, Nonadiabatic energy limit versus mirror ratio in magnetic-well geometry,Plasma Phys. 14:543 (1972), and references cited therein.

    Google Scholar 

  10. D. E. Baldwin,Preliminary Summary of Particle Transport Effects in Non-Axisymmetric Tandem Mirrors, Lawrence Livermore National Laboratory Report UCID-17926 (1978).

  11. D. D. Ryutov and G. V. Stupakov, Transverse particle losses in an ambipolar plasma trap,JETP Lett. 26:174 (1977) [transl. fromPis'ma Zh. Eksp. Tear. Fiz. 26:186 (1977)].

    Google Scholar 

  12. D. D. Ryutov and G. V. Stupakov, Neoclassical transport in ambipolar confinement systems,Sov. J. Plasma Phys. 4:278 (1978) [transl. fromFiz. Plazmy 4:501 (1978)].

    Google Scholar 

  13. D. D. Ryutov and G. V. Stupakov, Diffusion of resonance particles in ambipolar plasma traps,Sov. Phys. Dokl. 23:412 (1978) [transl. fromDok. Akad. Nauk SSSR 240:1086 (1978)].

    Google Scholar 

  14. R. H. Cohen, Orbital resonances in nonaxisymmetric mirror machines,Comments Plasma Phys. Cont. Fusion 4:157 (1979).

    Google Scholar 

  15. R. H. Cohen, Analytic approximation to resonant plateau transport coefficients for tandem mirrors,Nucl. Fusion 19:1579 (1979).

    Google Scholar 

  16. M. E. Rensink, R. H. Cohen, and A. A. Mirin, inPhysics Basis for MFTF-B, Lawrence Livermore National Laboratory Report UCID-18496, Part 2 (1980), p. IV-43.

  17. R. H. Cohen and G. Rowlands. Calculation of resonant transport coefficients from mappings,Phys. Fluids 24:2295 (1981).

    Google Scholar 

  18. W. A. Newcomb, Equilibrium and stability of collisionless systems in the paraxial limit,J. Plasma Phys. 26:529 (1981).

    Google Scholar 

  19. L. D. Pearlstein, T. B. Kaiser, and W. A. Newcomb, Analytic equilibria with quadrupole symmetry in the paraxial limit,Phys. Fluids 24:1326 (1981).

    Google Scholar 

  20. S. J. Sackett,EFFI — A Code for Calculating the Electromagnetic Field, Force, and Inductance in Coil Systems of Arbitrary Geometry, Lawrence Livermore National Laboratory Report UCRL-52402 (1978).

Download references

Author information

Authors and Affiliations

Authors

Additional information

C. V. Karmendy is deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foote, J.H., Chargin, A.K., Cohen, R.H. et al. TMX upgrade magnet system: Design characteristics and physics considerations. J Fusion Energ 2, 383–402 (1982). https://doi.org/10.1007/BF01053133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053133

Key words

Navigation