Skip to main content
Log in

The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Three-dimensional numerical model simulations of a mesoscale convective system are performed to evaluate the sensitivity of the simulations to differences in the convective trigger function. The Penn State/NCAR mesoscale model with the Kain-Fritsch convective parameterization scheme is used as the modeling system for the study. All simulations are performed on the June 10–11, 1985 squall line from the OK PRE-STORM field experiment. Individual simulations differ only in their specification of the trigger function within the Kain-Fritsch scheme. Comparison of results from 12 hour simulations indicates that the position, timing, and intensity of convective activity and mesoscale features vary substantially as a function of the trigger function formulation. The results suggest that the convective trigger function is an integral part of the overall convective parameterization problem, and that great care must be exercised is designing realistic trigger function formulations, especially as model resolutions approach the scale of individual convective clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model.Mon. Wea. Rev.,105, 270–286.

    Google Scholar 

  • Arakawa, A., Schubert, W. H., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I.J. Atmos. Sci.,31, 674–701.

    Google Scholar 

  • Anthes, R. A., Hsie, E.-Y., Kuo, Y. H., 1987:Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4), NCAR/TN-282+STR, National Center for Atmospheric Research, Boulder, CO, 66 pp.

    Google Scholar 

  • Bean, B. R., Emmanuel, C. B., Gilmer, R. O., McGavin, R. E., 1975: The spatial and temporal variations of the turbulent fluxes of heat, momentum and water vapor over Lake Ontario.J. Phys. Oceanogr.,5, 532–540.

    Google Scholar 

  • Bean, B. R., Glimer, R., Grossman, R. L., McGavin, R., 1972: An analysis of airborne measurements of vertical water vapor flux during BOMEX.J. Atmos. Sci.,29, 860–869.

    Google Scholar 

  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. In: Pfafflin, J., Ziegler, E. (eds.)Advances in Environmental Science and Engineering, 1, No. 1. New York: Gordon and Briech Sci. Publ., 50–85.

    Google Scholar 

  • Chen, C., Orville, H. D., 1981: Effects of mesoscale convergence on cloud convection.J. Appl. Meteor.,19, 256–274.

    Google Scholar 

  • Cunning, J. B., 1986: The Oklahoma-Kansas preliminary regional experiment for STORM-Central.Bull. Amer. Soc.,67, 1478–1486.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale tuo-dimensional model.J. Atmos. Sci.,46, 3077–3107.

    Google Scholar 

  • Frank, W. M., Cohen, C., 1985: Properties of tropical cloud ensembles estimated using a cloud model and an observed updraft population.J. Atmos. Sci.,42, 1911–1928.

    Google Scholar 

  • Fritsch, J. M., Chappell, C. F., 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization.J. Atmos. Sci.,37, 1722–1733.

    Google Scholar 

  • Fritsch, J. M., Chappell, C. F., Hoxit, L. R., 1976: The use of large-scale budgets for convective parameterization.Mon. Wea. Rev.,104, 1408–1418.

    Google Scholar 

  • Grell, G. A., 1992: Prognostic evaluation of assumptions used by cumulus parameterizations.Mon. Wea. Rev. (in press).

  • Johnson, R. H., Hamilton, P. J., 1988: The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line.Mon. Wea. Rev.,116, 1444–1472.

    Google Scholar 

  • Kain, J. S., Fritsch, J. M., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization.J. Atmos. Sci.,47, 2784–2802.

    Google Scholar 

  • Kreitzberg, C. W., Perkey, D. J., 1976: Release of potential instability: Part I. A sequential plume model within a hydrostatic primitive equation model.J. Atmos. Sci.,33, 456–475.

    Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence cumulus convection on large scale flow.J. Atmos. Sci.,31, 1232–1240.

    Google Scholar 

  • Rutledge, S. A., Houze, R. A., Biggerstaff, M. I., Matejka, T., 1988: The Oklahoma-Kansas convection system of 10–11 June 1985: Precipitation structure and single-doppler radar analysis.Mon. Wea. Rev.,116, 1409–1430.

    Google Scholar 

  • Stull, R. B., 1988:An Introduction to Boundary Layer Meteorology, Dordrecht: Kluwer Academic Publishers, 666 pp.

    Google Scholar 

  • Young, G., Fritsch, J. M. 1989: A proposal for general convections in analysis of mesoscale boundaries.Bull. Amer. Meteor. Soc.,70, 1412–1421.

    Google Scholar 

  • Zhang, D.-L., Anthes, R. A., 1982: A high resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor.,21, 1594–1609.

    Google Scholar 

  • Zhang, D.-L., Chang, H.-R., Seaman, N. L., Warner, T. T., Fritsch, J. M., 1986: A two-way interactive nesting procedure with variable terrain resolution.Mon. Wea. Rev.,114, 1330–1339.

    Google Scholar 

  • Zhang, D.-L., Fritsch, J. M., 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification.J. Atmos. Sci.,43, 1913–1943.

    Google Scholar 

  • Zhang, D.-L., 1989: The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model.Tellus,41A, 132–147.

    Google Scholar 

  • Zhang, D.-L., Gao, K., 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations, and stratiform precipitation.Mon. Wea. Rev.,117, 2067–2094.

    Google Scholar 

  • Zhang, D.-L., Gao, K., Parsons, D. B., 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part I: Model verification.Mon. Wea. Rev.,117, 960–994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kain, J.S., Fritsch, J.M. The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteorl. Atmos. Phys. 49, 93–106 (1992). https://doi.org/10.1007/BF01025402

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025402

Keywords

Navigation