Skip to main content
Log in

Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by Zooplankton and benthic organisms.

We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high Zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a Zooplankton biomass of 0.2 mg l−1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bergman B, Gallon JR, Rai AN & Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19: 139–185

    Google Scholar 

  • Bothe H (1982) Nitrogen fixation. In: Carr NG & Whitton BA (Eds) The Biology of Cyanobacteria (pp 87–104). University of California Press, Berkeley, U.S.A.

    Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36: 1756–1771

    Google Scholar 

  • Burns CW & Xu Z (1990) Calanoid copepods feeding on algae and filamentous cyanobacteria: Rates of ingestion, defecation and effects on trichome length. J. Plank. Res. 12: 201–213

    Google Scholar 

  • Burns CW & Hegarty B (1994) Diet selection by copepods in the presence of cyanobacteria. J. Plank Res. 16: 1671–690

    Google Scholar 

  • Canfield TJ & Jones JR (1996) Zooplankton abundance, biomass, and size-distribution in selected midwestern waterbodies and relation with trophic state. J. Fresh. Ecol. 11: 171–181

    Google Scholar 

  • Cardin CJ & Mason J (1976) Molybdate and tungstate transfer by rat ileum: competitive inhibition by sulphate. Biochim. Biophys. Acta 455: 937–946

    Google Scholar 

  • Carpenter EJ & Capone DG (1992) Nitrogen fixation inTrichodesmium blooms. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria:Trichodesmium and other Diazotrophs (pp 211–218). Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Cole JJ, Lane JM, Marino R & Howarth RW (1993) Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnol. Oceanogr. 38: 25–35

    Google Scholar 

  • D'Elia CF, Sanders JG & Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary; phytoplankton growth in large-scale, continuous cultures. Can. J. Fish. Aquat. Sci. 43: 397–406

    Google Scholar 

  • Doremus C (1982) Geochemical control of dinitrogen fixation in the open ocean. Biol. Oceanogr. 1: 429–435

    Google Scholar 

  • Durbin AE & Durbin EG (1981) Standing stock and estimated production rates of phytoplankton and Zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24–41

    Google Scholar 

  • Elliott BB & Mortenson LE (1975) Regulation of molybdate transport byClostridium pasteurianum. J. Bacteriol. 127: 770–779

    Google Scholar 

  • Elmgren R & Larsson U (1997) Himmerfjarden: Forandringar i ett naringsbelastat kustekyosystem i Ostersjon. Rapport 4565. Naturvardsverket Forlag

  • Epp GT (1995) Herbivory in the freshwater plankton: interactions ofDaphnia pulicaria and filamentous cyanobacteria. PhD dissertation, Cornell University, NY, U.S.A.

    Google Scholar 

  • Falconer IR, Choice A & Hosja W (1992) Toxicity of edible musselsMytilus edulis growing naturally in an estuary during a water bloom of the blue-green algaeNodularia spumigena. Environ. Toxicol. Water. Qual. 7: 119–123

    Google Scholar 

  • Falkowski PG (1997) Evolution of the nitogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275

    Google Scholar 

  • Flett RJ, Schindler DW, Hamilton RD & Campbell NER (1980) Nitrogen fixation in Canadian precambrian shield lakes. Can. J. Fish. Aquat. Sci.37: 494–505

    Google Scholar 

  • Fogg GE (1987) Marine planktonic cyanobacteria. In: Fay P & Baalen CV (Eds) The Cyanobacteria (pp 393–414). Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Fulton RS (1988) Grazing on filamentous algae by herbivorous Zooplankton. Fresh. Biol. 20: 263–271

    Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122: 571–609

    Google Scholar 

  • Gallon JR & Stal LJ (1992) N2 fixation in non-heterocystous cyanobacteria: An overview. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria:Trichodesmium and other Diazotrophs (pp 115–140). Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Gibson CE & Smith RV (1982) Freshwater plankton. In: Carr NG & Whitton BA (Eds) The Biology of Cyanobacteria (pp 463–489). Univ. of California Press, Berkeley, U.S.A.

    Google Scholar 

  • Gliwicz ZM & Lampert W (1990) Food thresholds inDaphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702

    Google Scholar 

  • Grobbelaar JU and House WA (1995) Phosphorus as a limiting resource in inland waters: interactions with nitrogen. In: Tiessen H (Ed.) Phosphorus in the Global Environment (pp 255–273). Wiley, Chichester

    Google Scholar 

  • Gronlund L, Kononen K, Lahdes E and Makela K (1996) Community development and modes of phosphorus utilization in a late summer ecosystem in the central Gulf of Finland, the Baltic Sea. Hydrobiol. 331: 97–108

    Google Scholar 

  • Haney JF (1987) Field studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Fresh. Res. 21: 467–475

    Google Scholar 

  • Hansson L-A, Bergman E & Cronberg G (1998) Size structure and succession in phytoplankton communities: the impact of interactions between herbivory and predation. Oikos 81: 337–345

    Google Scholar 

  • Hearn CJ & Lukatelich RJ (1990) Dynamics of Peel-Harvey Estuary, Southwest Australia. In: Cheng, RT (Ed.) Residual Currents and Long-term Transport. Coastal and Estuarine Studies 38 (pp 431–450). Springer-Verlag, New York, U.S.A.

    Google Scholar 

  • Holm NP, Ganf GG & Shapiro J (1983) Feeding and assimilation rates ofDaphnia pulex fedAphanizomenon flos-aquae. Limol. Oceanogr. 28: 677–687

    Google Scholar 

  • Horne AJ (1977) Nitrogen fixation — a review of this phenomenon as a polluting process. Prog. Water Technol. 8: 359–372

    Google Scholar 

  • Home AJ & Goldman CR (1972) Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnol. Oceanogr. 17: 678–692

    Google Scholar 

  • Horne AJ, Dillard JE, Fujita DK & Goldman CR (1972) Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumnAnabaena bloom. Limnol. Oceanogr. 17: 693–703

    Google Scholar 

  • Home AJ, Sandusk JC & Carmiggelt CJW (1979) Nitrogen fixation in Clear Lake, California. 3. Repetitive synoptic sampling of the springAphanizomenon blooms. Limnol. Oceanogr. 24: 316–328

    Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Syst. 19: 89–110

    Google Scholar 

  • Howarth RW & Cole JJ (1985) Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655

    Google Scholar 

  • Howarth RW, Marino R, Lane J & Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669–687

    Google Scholar 

  • Howarth RW, Marino R & Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688–701

    Google Scholar 

  • Howarth RW & Marino R (1990) Nitrogen-fixing cyanobacteria in the plankton of lakes and estuaries: A reply to the comment by Smith. Limnol. Oceanogr. 35: 1859–1863

    Google Scholar 

  • Howarth RW, Butler T, Lunde K, Swaney D & Chu CR (1993) Turbulence and planktonic nitrogen fixation: a mesocosm experiment. Limnol. Oceanogr. 38: 1696–1711

    Google Scholar 

  • Howarth RW, Swaney D, Marino R, Butler TJ & Chu CR (1995) Turbulence does not prevent nitrogen fixation by plankton in estuaries and coastal seas (reply to the comment of Paerl et al.). Limnol. Oceanogr. 40: 639–643

    Google Scholar 

  • Howarth RW & Marino R (1998) A mechanistic approach to understanding why so many estuaries and brackish waters are nitrogen limited. In: Effects of Nitrogen in the Aquatic Environment, KVA Report 1998: 1 (pp 117–136). Kungl. Vetenskapsakademien (Royal Swedish Academy of Sciences), Stockholm

    Google Scholar 

  • Huber AL (1986) Nitrogen fixation byNodularia spumigena Mertens (Cyanobacteriaceae). 1: Field Studies and the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131: 193–203

    Google Scholar 

  • Huising J & Matrone G (1975) Biological interactions of sulfate and molybdate. Environ. Health Perspect. 10: 265

    Google Scholar 

  • James MR & Forsyth DJ (1990) Zooplankton-phytoplankton interactions in a eutrophic lake. J. Plank. Res. 12: 455–472

    Google Scholar 

  • Jones GS, Blackburn SI & Parker NS (1994) A toxic bloom ofNodularia spumigena Mertens in Orielton Lagoon. Tasmania. Aust. J. Mar. Fresh. Res. 45: 787–800

    Google Scholar 

  • Karentz D & Smayda TJ (1998) Temporal patterns and variations in phytoplankton community organization and abundance in Narragansett Bay during 1959–1980. J. Plank Res. 20: 145–168

    Google Scholar 

  • Kling HJ, Findlay DL & Komárek J (1994)Aphanizomenon schindleri sp. nov.: a new nostocacean cyanoprokaryote from the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. Aquat. Sci. 51: 2267–2273

    Google Scholar 

  • Lehtimaki J, Moisander P, Sivonen K & Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63: 1647–1656

    Google Scholar 

  • Leibold MA, Chase JM, Shurin JB & Downing AL (1997) Species turnover and the regulation of trophic structure. Ann. Rev. Ecol. Syst. 28: 467–494

    Google Scholar 

  • Lindahl G & Wallstrom K (1985) Nitrogen fixation (acetylene reduction) in planktonic cyanobacteria in Oregrundsgrepen, SW Bothnian Sea. Arch. Hydrobiol. 104: 193–204

    Google Scholar 

  • Lukatelich RJ & McComb AJ (1986) Nutrient levels and the development of diatom and blue green algal blooms in a shallow Australian estuary. J. Plank. Res. 8: 597–618

    Google Scholar 

  • Lynch M & Shapiro J (1981) Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102

    Google Scholar 

  • Marino R, Howarth RW, Shamess J & Prepas EE (1990) Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol. Oceanogr. 35: 245–259

    Google Scholar 

  • Martin, JH, Coale KM, Johnson, KS, Fitzwater, SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindly S, Watson AJ, van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockelt J, Collins C, Anderson A, Bidigare R, Ondruske M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Green R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P & Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorical Pacific Ocean. Nature 371: 123–129

    Google Scholar 

  • Michaels AF, Oison D, Sarmiento JL, Ammerman JW, Fanning K, Jahnke R, Knap AH, Lipschultz F & Prospero JM (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35: 181–226

    Google Scholar 

  • Moisander P, Lehtimaki J, Sivonen K & Kononen K (1996) Comparison of15N2 and acetylene reduction methods for the measurement of nitrogen fixation by Baltic Sea cyanobacteria. Phycologia 35: 140–146

    Google Scholar 

  • Morel FMM & Hudson RJ (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (Ed.) Chemical Processes in Lakes (pp 251–282). Wiley, New York, U.S.A.

    Google Scholar 

  • Nalewajio C & Lean DRS (1978) Phosphorus kinetics — algal growth relationships in batch cultures. Mitt int. Verein. theor. angew. Limnol. 21: 184–192

    Google Scholar 

  • Niemisto L, Rinne I, Melsvasalo T, Niemei Å (1989) Blue-green algae and their nitrogen fixation in the Baltic Sea in 1980, 1982, and 1984. Meri 17: 1–59

    Google Scholar 

  • Nixon SW & Pilson MEQ (1983) Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 565–648). Academic, New York, U.S.A.

    Google Scholar 

  • NRC (1993) Managing wastewater in coastal urban areas. National Research Council, Washington, DC, U.S.A.

    Google Scholar 

  • Ogawa FE & Carr JF (1969) The influence of nitrogen on heterocyst production in blue-green algae. Limnol. Oceanogr. 14: 342–351

    Google Scholar 

  • Pace ML (1986) An empirical analysis of Zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45–55

    Google Scholar 

  • Pace ML, Findlay SEG & Lints D (1992) Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci. 49: 1060–1069

    Google Scholar 

  • Paerl HW (1985) Microzone formation: Its role in the enhancement of aquatic N2 fixation. Limnol. Oceanogr. 30: 1246–1252

    Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. In: Marshall KC (Ed.) Advances in Microbial Ecology (pp 305–343). Plenum, NY, U.S.A.

    Google Scholar 

  • Rowell A & Kerby NW (1991) Cyanobacteria and their symbionts. In: Dilworth MJ & Glenn AR (Eds) Biology and Biochemistry of Nitrogen Fixation. Studies in Plant Science 1 (pp 373–407). Elsevier, New York, U.S.A.

    Google Scholar 

  • Rueter JG (1982) Theoretical Fe limitations of microbial N2 fixation in the oceans. EOS 63: 945

    Google Scholar 

  • Schaffner WR, Hairston NG, jr & Howarth RW (1994) Feeding rates and filament clipping by crustacean Zooplankton consuming cyanobacteria. Verh. Internat. Verein. Limnol. 25: 2375–2381

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262

    Google Scholar 

  • Sellner KG, Olson MM & Kononen K (1994) Copepod grazing in a summer cyanobacteria bloom in the Gulf of Finland. Hydrobiologia 292/293: 249–254

    Google Scholar 

  • Stout PR & Meagher WR (1948) Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science 108: 471–473

    Google Scholar 

  • Tackx MLM, Bakker C & Van Rijswijk P (1990) Zooplankton grazing pressure in the Oosterschelde (The Netherlands). Neth. J. Sea Res. 25: 405–415

    Google Scholar 

  • Turpin DH, Layzell DB & Elrifi IR (1985) Modeling the C economy ofAnabaena flos-aquae. Plant. Physiol. 78: 746–752

    Google Scholar 

  • Uitto A (1996) Summertime herbivory of coastal mesozooplankton and metazoan microplankton in the northern Baltic. Mar. Ecol. Prog. Ser. 132: 47–56

    Google Scholar 

  • Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK & Mann DH (Eds) Fundamentals of Aquatic Ecology (pp 57–76). Blackwell Scientific, Oxford

    Google Scholar 

  • Varmo R, Viljamaa H, Pesonen L & Rinne I (1989) Two manipulated inner bays in the Helsinki Sea area, Northern Gulf of Finland. Aqua. Fenn. 19: 67–74

    Google Scholar 

  • Vitousek PM & Field CB (this volume) Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications. Biogeochemistry: in press

  • Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87–115

    Google Scholar 

  • Wallstrom K (1988) The occurrence ofAphanizomenon flos-aquae (Cyanophyceae) in a nutrient gradient in the Baltic. Kieler Meeresforschungen Sonderheft 6: 210–220

    Google Scholar 

  • Wallstrom K (1991) Ecological studies on nitrogen fixing blue-green algae and on nutrient limitation of phytoplankton in the Baltic Sea. PhD thesis, Uppsala University. Uppsala, Sweden

    Google Scholar 

  • Wallstrom K, Johansson S & Larsson U (1992) Effects of nutrient enrichment on planktonic blue-green algae in the Baltic Sea. Acta. Phytogeogr. Suec. 78: 25–31

    Google Scholar 

  • White JR & Roman MR (1992) Seasonal study of grazing by metazoan Zooplankton in the mesohaline Chesapeake Bay. Mar. Ecol. Prog. Ser. 86: 251–261

    Google Scholar 

  • Zevenboom W & Mur LR (1978) Nitrogen uptake and pigmentation of N-limited chemostat cultures and natural populations ofOscillatoria agardhii. Mitt int. Verein, theor. angew. Limnol. 21: 261–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, R.W., Chan, F. & Marino, R. Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model. Biogeochemistry 46, 203–231 (1999). https://doi.org/10.1007/BF01007580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007580

Key words

Navigation