Skip to main content
Log in

Gender variation inSilene acaulis (Caryophyllaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Silene acaulis (Caryophyllaceae) is an alpine-arctic plant with a gynodioecious breeding system, but significant variation in sex expression has been reported. In addition, population sex ratio may be modified by the anther-smutMicrobotryum violaceum (Pers.)Deml & Oberwinkler, which sterilizes individuals of both sexes. A survey was undertaken at several sites on Baffin Island, Canada, to determine sex ratio and assess variation in female function among morphologically hermaphroditic individuals. The degree of anthersmut infection was also measured. Six sites had high female frequencies ranging from 72–80% and < 2% smut infection. High female frequencies may indicate cytoplasmic control of male-sterility. A seventh site from a mesic habitat had only 50% females and a higher rate of smut infection (22%). Of the three sites studied in detail, 84% of females set at least one capsule compared to only 25% of the hermaphrodites, indicating reduced female function. Hermaphrodites displayed significant variability in female function. Flowers with short styles (< 4.0mm) had degenerated ovules, and field estimates confirmed that only 5% of these individuals set capsules, but comprised the majority (> 55%) of hermaphrodites. Although hermaphrodites with short-styled flowers functioned solely as males, there was no increase in pollen production compared to long-styled hermaphrodites. Long-styled hermaphrodites produced the same number of ovules as females, and all set at least one capsule but these plants were uncommon (< 11%) at all sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agren, J., Willson, M. F., 1991: Gender variation and sexual differences in reproductive characters and seed production in gynodioeciousGeranium maculatum. — Amer. J. Bot.78: 470–480.

    Google Scholar 

  • Alexander, H. M., 1987: Pollinator limitation in a population ofSilene alba infected by the anther-smut fungus,Ustilago violacea. — J. Ecology75: 771–780.

    Google Scholar 

  • —, 1989: An experimental field study of anther-smut disease ofSilene alba caused byUstilago violacea: genotypic variation and disease incidence. — Evolution43: 835–847.

    Google Scholar 

  • —, 1988: Disease spread and population dynamics of anther-smut infection ofSilene alba caused by the fungusUstilago violacea. — J. Ecology76: 91–104.

    Google Scholar 

  • Alexander, M. P., 1969: Differential staining of aborted and nonaborted pollen. — Stain Technol.44: 117–122.

    Google Scholar 

  • Arroyo, M. K. T., Raven, P. H., 1975: The evolution of sub-dioecy in morphologically gynodioecious species ofFuchsia sect.Encliandra (Onagraceae). — Evolution29: 500–511.

    Google Scholar 

  • Baker, H. G., 1947: Infection of species ofMelandrium byUstilago violacea (Pers.)Fuckel and the transmission of the resultant disease. — Ann. Bot.11: 333–348.

    Google Scholar 

  • Burdon, J. J., 1987: Diseases and plant population biology. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Charlesworth, B., Charlesworth, D., 1978: A model for the evolution of dioecy. — Amer. Naturalist112: 975–997.

    Google Scholar 

  • Chernov, Y. I., 1985: The living tundra. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Clay, K., 1984: The effect of the fungusAtkinsonella hypoxylon (Clavicipitaceae) on the reproductive system and demography of the grassDanthonia spicata. — New Phytol.98: 165–175.

    Google Scholar 

  • Delph, L. F., 1990: Sex ratio variation in the gynodioecious shrubHebe strictissima (Scrophulariaceae). — Evolution44: 134–142.

    Google Scholar 

  • Dommee, B., Assouad, M. W., Valdeyron, G., 1978: Natural selection and gynodioecy inThymus vulgaris L. — Bot. J. Linn. Soc.77: 17–28.

    Google Scholar 

  • Dulberger, R., Horovitz, A., 1984: Gender polymorphism in flowers ofSilene vulgaris (Moench)Garcke (Caryophyllaceae). — Bot. J. Linn. Soc.89: 101–117.

    Google Scholar 

  • Gleason, H. A., Cronquist, A., 1963: Manual of vascular plants of Northeastern United States and adjacent Canada. — Toronto: Van Nostrand Reinhold Co.

    Google Scholar 

  • Gross, K. L., Soule, J. D., 1981: Differences in biomass allocation to reproductive and vegetative structures of male and female plants of a dioecious perennial herb,Silene alba (Miller)Krause. — Amer. J. Bot.68: 801–807.

    Google Scholar 

  • Hulten, E., 1968: Flora of Alaska and neighbouring territories. — Stanford: Stanford University Press.

    Google Scholar 

  • Jennersten, O., 1983: Butterfly visitors as vectors ofUstilago violacea spores between caryophyllaceous plants. — Oikos40: 125–130.

    Google Scholar 

  • Jolls, C. L., Chenier, T. C., 1989: Gynodioecy inSilene vulgaris (Caryophyllaceae): progeny success, experimental design, and maternal effects. — Amer. J. Bot.76: 1360–1367.

    Google Scholar 

  • Kohn, J. R., 1988: Why be female? — Nature335: 431–433.

    Google Scholar 

  • —, 1989: Sex ratio, seed production, biomass allocation, and the cost of male function inCucurbita foetidissima HBK (Cucurbitaceae). — Evolution43: 1424–1434.

    Google Scholar 

  • Lee, J. A., 1981: Variation in the infection ofSilene dioica (L.)Clairv. byUstilago violacea (Pers.)Fuckel in north west England. — New Phytol.87: 81–89.

    Google Scholar 

  • Lewis, D. G., 1941: Male sterility in natural populations of hermaphrodite plants. — New Phytol.40: 56–63.

    Google Scholar 

  • Lloyd, D. G., 1974: Theoretical sex ratios of dioecious and gynodioecious angiosperms. — Heredity32: 11–34.

    Google Scholar 

  • —, 1975: The maintenance of gynodioecy and androdioecy in angiosperms. — Genetica45: 325–339.

    Google Scholar 

  • —, 1976: The transmission of genes via pollen and ovules in gynodioecious angiosperms. — Theor. Pop. Biol.9: 299–316.

    Google Scholar 

  • —, 1980: Sexual strategies in plants III. A quantitative method for describing the gender of plants. — New Zealand J. Bot.18: 103–108.

    Google Scholar 

  • —, 1984: Modification of the gender of seed plants in varying conditions. — Evol. Biol.17: 255–338.

    Google Scholar 

  • Lovett Doust, J., O'Brien, G., Lovett Doust, L., 1987: Effect of density on secondary sex characteristics and sex ratio inSilene alba (Caryophyllaceae). — Amer. J. Bot.74: 40–46.

    Google Scholar 

  • Maki, M., 1993: Outcrossing and fecundity advantage of females in gynodioeciousChionographis japonica var.kurohimensis (Liliaceae). — Amer. J. Bot.80: 629–634.

    Google Scholar 

  • Maus, L., 1987: Variation in low arctic plant community structure with respect to location and environmental factors in southern Baffin Island, N.W.T.-M.A. thesis, University of Windsor, Windsor, Ont.

    Google Scholar 

  • Mayer, S. S., Charlesworth, D., 1991: Cryptic dioecy in flowering plants. — Trends Ecol. Evol.6: 320–325.

    Google Scholar 

  • Molau, U., 1991: Gender variation inBartsia alpina (Scrophulariaceae), a subarctic perennial hermaphrodite. — Amer. J. Bot.78: 326–339.

    Google Scholar 

  • —, 1992: Reproductive system and population structure in three arcticSaxifraga species. — J. Ecol.80: 149–163.

    Google Scholar 

  • Pettersson, M. W., 1992: Advantages of being a specialist female in gynodioeciousSilene vulgaris. — Amer. J. Bot.79: 1389–1395.

    Google Scholar 

  • Ross, M. D., 1978: The evolution of gynodioecy and subdioecy. — Evolution32: 174–188.

    Google Scholar 

  • Sas Inc., 1988: SAS guides for personal computers, Release 6.03 edn. — Cary, NC: SAS Institute.

    Google Scholar 

  • Savile, D. B. O., Parmelee, J., 1964: Parasitic fungi of the Queen Elizabeth Islands. — Canad. J. Bot.42: 699–722.

    Google Scholar 

  • Shykoff, J., 1988: Maintenance of gynodioecy inSilene acaulis (Caryophyllaceae): stage-specific fecundity and viability selection. — Amer. J. Bot.75: 844–850.

    Google Scholar 

  • —, 1992: Sex polymorphism inSilene acaulis (Caryophyllaceae) and the possible role of sexual selection in maintaining females. — Amer. J. Bot.79: 138–143.

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J., 1981: Biometry. 2nd edn. — San Francisco: Freeman.

    Google Scholar 

  • Stevens, D. P., 1988: On the gynodioecious polymorphism inSaxifraga granulata L. (Saxifragaceae). — Biol. J. Linn. Soc.35: 15–28.

    Google Scholar 

  • Van Damme, J. M., Van Delden, W., 1984: Gynodioecy inPlantago lanceolata L. IV. Fitness components of sex types in different life cycle stages. — Evolution38: 1326–1336.

    Google Scholar 

  • Webb, C. J., 1979: Breeding systems and the evolution of dioecy in New Zealand ApioidUmbelliferae. — Evolution33: 662–672.

    Google Scholar 

  • —, 1981: Test of a model predicting equilibrium frequencies of females in populations of gynodioecious angiosperms. — Heredity46: 397–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermanutz, L.A., Innes, D.J. Gender variation inSilene acaulis (Caryophyllaceae). Pl Syst Evol 191, 69–81 (1994). https://doi.org/10.1007/BF00985343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985343

Key words

Navigation