Skip to main content
Log in

The protective effect of antioxidants to a phototoxin-sensitive insect herbivore,Manduca sexta

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Photo-activated plant secondary compounds have been shown to be toxic to many organisms including insects. Insect defenses include behavioral mechanisms such as light avoidance, as well as specific biochemical defenses such as antioxidants and antioxidant enzymes. These antioxidant defenses eliminate or quench the deleterious singlet oxygen and free radicals formed by these phototoxins. In this paper we examined the role of dietary antioxidants in protecting the phototoxin-sensitive insect herbivoreManduca sexta. Elevated dietary levels of the lipid-soluble antioxidantsΒ-carotene and vitamin E resulted in a concentration-dependent reduction in the mortality associated with treatment ofM. sexta larvae with the phototoxic thiopheneα-terthienyl. Elevated levels of dietary ascorbic acid had no effect, whereas reduced levels greatly increased the toxicity ofα-terthienyl. Tissue levels of antioxidants were shown to increase substantially in larvae fed antioxidant-supplemented diets. The results suggest that the ability to absorb and utilize plant-derived antioxidants could be an important defense against photo-activated plant secondary compounds and may have allowed some insects to exploit phototoxic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnason, J.T., Chan, G.F.Q., Wat, K., Downum, K., andTowers, G.H.N. 1981a. Oxygen requirement for near-UV mediated cytotoxicity of alpha-terthienyl toEscherchia coli andSaccharomyces cerevisiae.Photochem. Photobiol. 33:821–824.

    Google Scholar 

  • Arnason, J.T., Swain, T., Wat, C.K., Graham, E.A., Partington, S., Towers G.H.N., andLam, J. 1981b. Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae.Biochem. Sys. Ecol. 9:63–68.

    Google Scholar 

  • Ames, B.N., Cathcart, R., Schweirs, E., andHochstein, P. 1981. Uric acid provides an antioxidant defense in humans against oxidant and radical caused aging and cancer: A hypothesis.Proc. Natl. Acad. Sci. U.S.A. 78:6858.

    PubMed  Google Scholar 

  • Barker, J.A., Gommers E.J., Niewenhuis, I., andWynberg, H. 1979. Photoactivation of the nematicidal compound alpha-terthienyl from roots of marigolds (Tagetes species).J. Biol. Chem. 254:1841–1845.

    PubMed  Google Scholar 

  • Bell, R.A., andJoachim, F.G. 1976. Techniques for rearing laboratory populations of tobacco hornworms.Ann. Entomol. Soc. Am. 19:365–373.

    Google Scholar 

  • Berenbaum, M. 1987. Charge of the light brigade: Phytotoxicity as a defense against insects, pp. 206–216,in J.R. Hietz andK.R. Downum (eds.). Light Activated Pesticides. ACS Symposium Series No. 339, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Berenbaum, M., andLee, K.W. 1990. Sensitivity of parsnip webworms to non-hostplant phototoxins.Photochem. Photobiol. In press.

  • Bureau, J.C., andBushway, R.J. 1986. HPLC determination of carotenoids in fruits and vegetables in the United States.J. Food Sci. 51(1): 128–130.

    Google Scholar 

  • Champagne, D.E., Arnason, J.T., Philogène, B.J.R., Morand, P., andLam, J. 1986. Light-mediated allelochemical effects of naturally-occurring polyacetylenes and thiophenes from Asteraceae on herbivorous insects.J. Chem. Ecol. 12:835–858.

    Google Scholar 

  • Dadd, R.H. 1985. Nutrition: Organisms, pp. 313–380,in G.A. Kerkut and L.E. Gilbert (eds.). Comparative insect Physiology, Biochemistry, and Pharmacology. Vol. 4. Pergamon Press, New York, pp. 313–380.

    Google Scholar 

  • David, W.A.L., andEllaby, S. 1975. The viability of eggs of the African armywormSpodoptera exempta in laboratory cultures.Entomol. Exp. Appl. 18:269–280.

    Google Scholar 

  • Downum, K.R. 1986. Photoactivated biocides from higher plants, pp. 197–205,in H.B. Green and P.A. Hieden (eds.). Natural Resistance of Plants to Pests: Roles of Allelochemicals. ACS symposium series No. 296. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Downum, K.R., Rosenthal, G.A., andTowers, G.H.N. 1984. Phytotoxicity of all allelochemical alpha-terthienyl to larvae ofManduca sexta.Pest. Biochem. Physiol. 22:104–109.

    Google Scholar 

  • Feltwell, J. 1978. The distribution of carotenoids in insects, pp. 277–293,in J.E. Harbourne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.

    Google Scholar 

  • Feltwell, J., andRothschild, M. 1974. Carotenoids in thirty-eight species of lepidoptera.J. Zool. 174:441–465.

    Google Scholar 

  • Fields, P., Arnason, J.T., andPhilogene, B.J.R. 1990. The behavioural and physical adaptations of three insects that feed on the phototoxic plantHypericum perforatum.Can. J. Zool. 68:339–346.

    Google Scholar 

  • Foote, C.S. 1987. Type I and type II mechanisms of photodynamic action, pp. 22–38,in J.R. Hietz and K.R. Downum (eds.). Light Activated Pesticides. ACS Symposium Series No. 339. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Foote, C.S., andDenny, R.W. 1968. Chemistry of singlet oxygen. VII. Quenching by beta-carotene.J. Am. Chem. Soc. 90:6233–6235.

    Google Scholar 

  • Foote, C.S., Clough, R.C., andYee, B.G. 1978. Photooxidation of tocopherols, pp. 182–193,in C. DeDuve and O. Hayaishi (eds.). Tocopherol, Oxygen, and Biomembranes. Elsevier, Amsterdam.

    Google Scholar 

  • Giles, A. Wamer, A., andKornhauser, A. 1984. In vivo protection by beta-carotene against phytotoxicity.Photochem. Photobiol. 395:3(abstract).

    Google Scholar 

  • Goodwin, T.W. 1980. The Biochemistry of Carotenoids, Vol. II. Chapman and Hall, London. pp. 97–121.

    Google Scholar 

  • Halliwell, B., andGutteridge, J.M.C. 1985. Free Radicals in Biology and Medicine. Clarendon Press, Oxford. p. 332.

    Google Scholar 

  • Iyengar, S., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., andTimmins, G. 1987. Toxicokinetics of the phototoxic allelochemical alpha-terthienyl in three herbivorous lepidoptera.Pest. Biochem. Physiol. 29:1–9.

    Google Scholar 

  • Kagan, J., Bazin, M., andSantus, R. 1989. Photosensitization with alpha-terthienyl: The formation of Superoxide ion in aqueous media.J. Photochem. Photobiol. B: Biol. 3:165–174.

    Google Scholar 

  • Kayser, H. 1985. Pigments, pp. 368–415,in G.A. Kerkut and L.E. Gilbert (eds.). Comparative Insect Physiology, Biochemistry, and Pharmacology, Vol. 10. Academic Press, New York.

    Google Scholar 

  • Knox, J.P., andDodge, A.D. 1985. Isolation and activity of the photodynamic pigment hypericin.Plant Cell Environ. 8:19–25.

    Google Scholar 

  • Knox, J.P., Samuels, R.J., andDodge, A.D. 1987. The photodynamic activity of hypericin,in J. Hietz and K.R. Downum (eds.). Light-Activated Pesticides. ACS Symposium Series No. 339. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Kramer, K.J., Hendricks, L.H., Liang, Y.T., andSieb, P.A. 1978. Effect of ascorbic acid and related compounds on the tobacco hornwormManduca sexta Johannson (Lepidoptera: Sphingidae).J. Agric. Food Chem. 26(4):874–878.

    Google Scholar 

  • Krinsky, N.I., andDeneke, S.M. 1982. Interaction of oxygen and oxy-radicals with carotenoids.J. Natl. Cancer Inst. 69:205.

    PubMed  Google Scholar 

  • Larson, R.A. 1986. Insect defenses against phototoxic plant chemicals.J. Chem. Ecol. 12:859–870.

    Google Scholar 

  • Larson, R.A., andBerenbaum, M. 1988. Environmental phytotoxicity.Environ. Sci. Technol. 22(4):354–360.

    Google Scholar 

  • Lee, K.W., andBerenbaum, M. 1989. Action of antioxidant enzymes and cytochrome p-450 monooxygenases in the cabbage looper in response to plant phototoxins.Arch. Insect Physiol. Biochem. 10:151–162.

    Google Scholar 

  • Levine, S.A., andKidd, P.M. 1986. Antioxidant adaptation: Its role in free radical pathology. Biocurrents Division, Allergy Research Group, San Leandro, California. 367 pp.

    Google Scholar 

  • McFarlane, J.E. 1972. Vitamin E, tocopherol quinone, and selenium in the diet of the house cricketAcheta domesticus.Isr. J. Entomol. 3:7–14.

    Google Scholar 

  • McRae, D.G., Yamamoto, E., andTowers, G.H.N. 1985. The mode of action of polyacetylene and thiophene photosensitizers on liposome permeability to glucose.Biochim. Biophys. Acta 821:488–496.

    PubMed  Google Scholar 

  • Miller, K.W., andYang, C.S. 1985. An isocratic HPLC method for the simultaneous determination of plasma retinol, alpha-tocopherol, and various carotenoids.Anal. Biochem. 145:21–26.

    PubMed  Google Scholar 

  • Pardini, R.S., Pritsos, C.A., Bowen, S.M., Ahmad, S., andBlomquist, G.J. 1989. Adaptations to plant pro-oxidants in a phytophagous insect model: Enzymatic protection from oxidative stress, pp. 725–728,in M.G. Simic, K.A. Taylor, J.F. Ward, and C. von Sontag (eds.). Oxygen Radicals in Biology and Medicine. Plenum Publishing, New York.

    Google Scholar 

  • Poff, J. 1976. Carotenoids of some aposematic and crypticLeptinotarsa (Coleoptera: chrysomelidae).Am. Zool. 16:271.

    Google Scholar 

  • Pritsos, C.A., Ahmad, S., Bowen, S.M., Elliot, A.J., Blomquist, G.J., andPardini, R.S. 1988. Antioxidant enzymes of the black swallowtail butterfly,Papilio polyxenes and their responses to the pro-oxidant allelochemical quercitin.Arch. Insect Physiol. Biochem. 8:101–113.

    Google Scholar 

  • Robinson, J.R., andBeatson, E.P. 1985. Enhancement of dye-sensitized phytotoxicity to house fly larvae in vivo by dietary ascorbate, diazobicyclooctane, and other additives.Pest. Biochem. Physiol. 24:375–383.

    Google Scholar 

  • Sandberg, S.L., andBerenbaum, M. (1989). Leaf-tying by tortricid larvae as an adaption for feeding on phototoxicHypericum perforatum.J. Chem. Ecol. 15(3):875–885.

    Google Scholar 

  • Scaiano, J.C., Evans, C., andArnason, J.T. 1989. Characterization of the alpha-terthienyl radical cation: Evidence against electron transfer to oxygen in vitro.J. Photochem. Photobiol. B: Biol. 3:411–418.

    Google Scholar 

  • Sen, A.,Iyengar, S.,Arnason, J.T.,Craig, D.A.,Philogène, B.J.R., andMorand, P. 1990. Cytotoxic effects of alpha-terthienyl on the midgut of the tobacco hornwormManduca sexta. Can. J. Zool. In press.

  • Spikes, J.D. 1977. Photosensitizers, pp. 87–112,in K.C. Smith (eds.). The Science of Photobiology. Plenum Press, New York.

    Google Scholar 

  • Towers, G.H.N. 1984. Interaction of light with phytochemicals in some natural and novel systems.Can. J. Bot. 62:2900–2911.

    Google Scholar 

  • Turunen, S. 1976. Vitamin E effect of lipid synthesis and accumulation of linolenate inPierris brassicae.Ann. Zool. Fenn. 13:148–152.

    Google Scholar 

  • Veerman, A. 1980. Functional involvement of carotenoids in photoperiodic induction of diapause in the spider mite,Tetranychus urticae.Physiol. Entomol. 5:297–300.

    Google Scholar 

  • Witting, L.A. 1976. Vitamin E and lipid antioxidants, pp. 295–315,in W. Pryor (ed.). Free Radicals in Biology, Vol. IV. Academic Press. New York.

    Google Scholar 

  • Zaspel, B.J., andCsallany, A.J. 1983. Determination of alpha-tocopherol in tissues and plasma by HPLC.Anal. Biochem. 130:146–150.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aucoin, R.R., Fields, P., Lewis, M.A. et al. The protective effect of antioxidants to a phototoxin-sensitive insect herbivore,Manduca sexta . J Chem Ecol 16, 2913–2924 (1990). https://doi.org/10.1007/BF00979483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00979483

Key Words

Navigation