Skip to main content
Log in

Biochemical characterization of theO-glycans on recombinant glycophorin A expressed in Chinese hamster ovary cells

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Alterations inN- andO-linked glycosylation affect cell surface expression and antigenicity of recombinant glycophorin A expressed in transfected Chinese hamster ovary (CHO) cells. To understand these effects further, glycophorin A was purified by immunoaffinity chromatography from transfected wild type and glycosylation deficient CHO cells. TheO-glycans were characterized both biochemically, using gel filtration and high performance anion exchange chromatography, and immunologically, using carbohydrate specific monoclonal antibodies to probe Western blots. TheO-glycans of human erythrocyte glycophorin A consist mainly of short oligosaccharides with one, two, or three sialic acid residues linked to a common disaccharide core, Galβ1-3GalNAcα1-Ser/Thr, with the disialylated structure being the most abundant. With the exception of the trisialylated derivative, the same structures were found on recombinant glycophorin A expressed by wild type CHO cells. However, in contrast to human crythrocyte glycophorin A, the monosialylated oligosaccharide was the most abundant structure on the recombinant protein. Furthermore, recombinant glycophorin A was shown to express a small amount of the Tn antigen (GalNAcα1-Ser/Thr). Recombinant glycophorin A had the sameO-glycan composition, whether purified from clones expressing high or moderate levels of the recombinant glycoprotein. This indicates that the level of expression of the transfected glycoprotein did not affect itsO-glycan composition. Deletion of theN-linked glycosylation site at Asn26, by introducing the Mi.I mutation (Thr28 → Met) by site-directed mutagenesis, did not markedly affect theO-glycan composition of the resulting recombinant glycoprotein expressed in wild type CHO cells. This demonstrates that the presence or absence of theN-glycan did not influenceO-linked glycosylation of the recombinant glycoprotein. Finally, theO-glycans on recombinant glycophorin A expressed in the Lec 2 and Lec 8 glycosylation deficient CHO cells were characterized. TheO-glycans on Lec 2 cell glycophorin A were predominantly Galβ1-3GalNAcα1-Ser/Thr (T antigen), while those on Lec 8 glycophorin A were exclusively GalNAcα1-Ser/Thr (Tn antigen). These results will lead to a better understanding of the cell biology and immunology of this important human erythrocyte glycoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomita M, Marchesi VT (1975)Proc Natl Acad Sci USA 72:2954–68.

    Google Scholar 

  2. Fukuda M, Lauffenburger M, Sasaki H, Rogers ME, Dell A (1987)J Biol Chem 262:11952–57.

    Google Scholar 

  3. Yoshima H, Furthmayr H, Kobata A (1980)J Biol Chem 255:9713–18.

    Google Scholar 

  4. Thomas DB, Winzler RJ (1969)J Biol Chem 244:5943–46.

    Google Scholar 

  5. Blumenfeld OO, Adamany AM (1978)Proc Natl Acad Sci USA 75:2727–31.

    Google Scholar 

  6. Lisowska E, Wasniowska K (1978)Eur J Biochem 88:247–52.

    Google Scholar 

  7. Dahr W (1992)Vox Sang 62:129–35.

    Google Scholar 

  8. Telischi M, Behzad O, Issitt PD, Pavone BG (1976)Vox Sang 31:109–16.

    Google Scholar 

  9. Rearden A, Frandson S, Carry JB (1987)Vox Sang 52:318–21.

    Google Scholar 

  10. Holliman SM (1989) InBlood Group Systems: MN and Gerbich, 1st edition (Unger PJ, Laird-Fryer, eds) pp. 1–29. Arlington, VA: American Association of Blood Banks.

    Google Scholar 

  11. Silberstein LE, Goldman J, Kant JA, Spitalnik SL (1988)Arch Biochem Biophys 264:244–52.

    Google Scholar 

  12. Kim YD (1980)Vox Sang 39:162–68.

    Google Scholar 

  13. Hadley TJ, Klotz FW, Miller LH (1986)Ann Rev Microbiol 40:451–77.

    Google Scholar 

  14. Remaley AT, Ugorski M, Wu N, Litzky L, Burger SR, Moore JS, Fukuda M, Spitalnik SL (1991)J Biol Chem 266:24176–83.

    Google Scholar 

  15. Ugorski M, Blackall DP, Påhlsson P, Shakin-Eshleman SH, Moore J, Spitalnik SL (1993)Blood 82:1913–20.

    Google Scholar 

  16. Blackall DP, Ugorski M, Påhlsson P, Shakin-Eshleman SH, Spitalnik SL (1993)J Immunol (in press).

  17. Blackall DP, Ugorski M, Smith ME, Påhlsson P, Spitalnik SL (1992)Transfusion 32:629–32.

    Google Scholar 

  18. Nichols ME, Rosenfeld RD, Rubinstein P (1985)Vox Sang 49:138–48.

    Google Scholar 

  19. Telen MJ, Scearce RM, Haynes BF (1987)Vox Sang 52:236–43.

    Google Scholar 

  20. Gardner B, Parsons SF, Merry AH, Anstee DJ (1989)Immunology 68:283–89.

    Google Scholar 

  21. Wasniowska K, Duk M, Steuden I, Czerwinski M, Wiedlocha A, Lisowska E. (1988)Arch Immunol Ther Exp 36:623–32.

    Google Scholar 

  22. Rubocki R, Milgrom F (1986)Vox Sang 51:217–25.

    Google Scholar 

  23. Bigbee WL, Vanderlaan M, Fong SSN, Jensen RH (1983)Mol Immunol 20:1353–62.

    Google Scholar 

  24. Bigbee WL, Langlois RG, Vanderlaan M, Jensen RH (1984)J Immunol 133:3149–55.

    Google Scholar 

  25. Jaskiewicz E, Lisowska E, Lundblad A (1990)Glycoconjugate J 7:255–68.

    Google Scholar 

  26. Jaskiewicz E, Moulds JJ, Kraemer K, Goldstein AS, Lisowska E (1990)Transfusion 30:230–35.

    Google Scholar 

  27. Lisowska E, Messeter L, Duk M, Czerwinski M, Lundblad A (1987)Mol Immunol 24:605–13.

    Google Scholar 

  28. Duk M, Steuden I, Dus D, Radzikowski C, Lisowska E (1992)Glyeoconjugate J 9:148–53.

    Google Scholar 

  29. Judd WJ, Issitt PD, Pavone BG, Anderson J, Aminoff D (1979)Transfusion 19:12–18.

    Google Scholar 

  30. King JM, Parsons SF, Wu AM, Jones N (1991)Transfusion 31:142–49.

    Google Scholar 

  31. Perkins ME, Holt EH (1988)Mol Biochem Parasitol 27:23–34.

    Google Scholar 

  32. Dahr W, Newman RA, Contreras M, Kordowicz M, Teesdale P, Beyreuther K, Kruger J (1984)Eur J Biochem 138:259–65.

    Google Scholar 

  33. Stanley P, Caillibot V, Siminovich L (1975)Cell 6:121–28.

    Google Scholar 

  34. Stanley P (1984)Ann Rev Genet 18:525–52.

    Google Scholar 

  35. Deutscher SL, Nuwayhid N, Stanley P, Barak-Briles EI, Hirschberg CB (1984)Cell 39:295–99.

    Google Scholar 

  36. Deutscher SL, Hirschberg CB (1986)J Biol Chem 261:96–100.

    Google Scholar 

  37. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989)Gene 77:51–59.

    Google Scholar 

  38. Laemmli UK (1970)Nature 227:680–85.

    Google Scholar 

  39. Blumenfeld OO, Zvilichovsky B (1972)Methods Enzymol 28:245–52.

    Google Scholar 

  40. Carlson DM (1968)J Biol Chem 243:616–26.

    Google Scholar 

  41. Fukuda M (1989)Methods Enzymol 179:17–29.

    Google Scholar 

  42. Krotkiewski H, Nilsson B, Svensson S (1989)Eur J Biochem 184:29–38.

    Google Scholar 

  43. Townsend RR, Hardy MR, Lee YC (1989)Methods Enzymol 179:65–76.

    Google Scholar 

  44. Varki A, Diaz S (1984)Anal Biochem 137:236–47.

    Google Scholar 

  45. Angel AS, Lindh F, Nilsson B (1987)Carbohydr Res 168:15–31.

    Google Scholar 

  46. Distler JJ, Jourdian GW (1978)Methods Enzymol 50:514–20.

    Google Scholar 

  47. Påhlsson P, Shakin-Eshleman SH, Spitalnik SL (1992)Biochem Biophys Res Commun 189:1667–73.

    Google Scholar 

  48. Duk M, Czerwinski M, Lisowska E (1992)Hybridoma 11:181–90.

    Google Scholar 

  49. Cummings RD, Kornfeld S, Schneider WJ, Hobgood KK, Tolleshaug H, Brown MS, Goldstein JL (1983)J Biol Chem 258:15261–73.

    Google Scholar 

  50. Kobata A, Yamashita K, Takasaki S (1987)Methods Enzymol 138:84–94.

    Google Scholar 

  51. Towbin H, Staehelin T, Gordon J (1979)Proc Natl Acad Sci USA 76:4350–54.

    Google Scholar 

  52. Steuden I, Duk M, Czerwinski M, Radzikowski C, Lisowska E (1985)Glycoconjugate J 2:303–14.

    Google Scholar 

  53. Hirohashi S, Clausen H, Yamada T, Shimosato Y, Hakomori S (1985)Proc Natl Acad Sci USA 82:7039–43.

    Google Scholar 

  54. Varki A (1991)FASEB J 5:226–35.

    Google Scholar 

  55. Kornfeld R, Kornfeld S (1985)Ann Rev Biochem 54:631–64.

    Google Scholar 

  56. Johnson DC, Spear PG (1983)Cell 32:987–97.

    Google Scholar 

  57. Abeijon C, Hirschberg CB (1987)J Biol Chem 262:4153–59.

    Google Scholar 

  58. Pascale MC, Erra MC, Malagolini N, Serafini-Cessi F, Leone A, Bonatti S (1992)J Biol Chem 267:25196–201.

    Google Scholar 

  59. Duk M, Sticher U, Brossmer R, Lisowska E (1994)Glycobiology (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Påhlsson, P., Blackall, D.P., Ugorski, M. et al. Biochemical characterization of theO-glycans on recombinant glycophorin A expressed in Chinese hamster ovary cells. Glycoconjugate J 11, 43–50 (1994). https://doi.org/10.1007/BF00732431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732431

Keywords

Navigation