Skip to main content
Log in

Dynamic functional and structural analysis of living cells: New tools for vital staining of nuclear DNA and for characterisation of cell motion

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Increasing interest has been paid to applications of fluorescence measurements to analyze physiological mechanisms in living cells. However, few studies have taken advantage of DNA quantification by fluorometry for dynamic assessment of chromatin organization as well as cell motion during the cell cycle. This approach involves both optimal conditions for DNA staining and cell tracking methods. In this context, this report describes a stoichiometric method for nuclear DNA specific staining, using the bisbenzimidazole dye Hoechst 33342 associated with verapamil, a calcium membrane channel blocker. This method makes it possible to correlate variations of nuclear DNA content with cell motion in cells that are maintained alive. Motion measurement is the second goal of this paper and it explains the snake-spline method, and the associated cell following method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, M.O. (1991). Les contours actifs: modélisation, comportement et convergence, INPL thesis.

  • Berthommier, F., O. François, T. Coll, T. Hervé, I. Marque, P. Cinquin and J. Demongeot (1971). Asymptotic behaviour of neural networks and image processing. In: A. Babloyantz, ed., Self-Organization, Emerging Properties and Learning, 219–230. New York, Plenum Press, NATO Series.

    Google Scholar 

  • Bertran de Rio, L., A. Gomez and M. Jose Yacaman (1991). Image processing in TEM using the wavelet transform. Ultramicroscopy 38: 319–324.

    Google Scholar 

  • Blankenship, T. (1987). Real-time enhancement of medical ultrasound images. In: L.W. Kessler, ed., Acoustical Imaging, 187–195. New York, Plenum.

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE PAMI 8: 679–698.

    Google Scholar 

  • Catte, F., P.L. Lions, J.M. Morel and T. Coll (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29: 182–193.

    Google Scholar 

  • Cohen, I. (1992). Modèles déformables 2D et 3D: application à la segmentation d'images médicales. Paris-Dauphine thesis.

  • Colomb, E., C. Dussert and P.M. Martin (1991). Nuclear texture parameters as discriminant factors in cell cycle and drug sensitivity studies. Cytometry 12: 15–25.

    Google Scholar 

  • Cottet, G.H. (1991). Modèles de réaction-diffusion pour des réseaux de neurones stochastiques et déterministes. C. R. Acad. Sci Serie I Math. 312: 217–221.

    Google Scholar 

  • Cottet, G.H. and L. Germain (1993). Image processing through reaction combined with non-linear diffuson. Mat. Comput. 61: 659–673.

    Google Scholar 

  • Cottet, G.H. (in press). Neural networks: continuous approach and applications to image processing. J. Biol. Systems.

  • de Boor, C. (1978). A practical guide to splines. Berlin, Springer Verlag (ed.)

    Google Scholar 

  • Duncan, J.H. and T.C. Chou (1992). On the detection of Motion and the Computation of Optical Flow. IEEE PAMI 14: 346–352.

    Google Scholar 

  • Erba E., P. Ubezio, M. Broggini, M. Ponti and M. D'Incalci M. (1988). DNA damage, cytotoxic effect and cell-cycle perturbation of Hoechst 33342 on L1210 cells in vitro. Cytometry 9: 1–6.

    Google Scholar 

  • Fay, D.A. and A.M. Waxman (1991). Real-time early vision neurocomputing. In: International Joint Conference on Neural Networks, IEEE 1: 621–626.

  • Fischer, J.R. and J. Dorband (1991). Applications of the MasPar MP-1 at NASA/Goddard. In: Compcon 91, IEEE: 278–282

  • Garcia-Segura, L.M., F. Soto, R. Planells-Cases, J. M. Gonzales-Ros and J.A. Ferragut (1992). Verapamil reverses the ultrastructural alterations in the plasma membrane induced by drug resistance. FEBS Lett. 314: 404–408.

    Google Scholar 

  • Horn, B.K.P. and B.G. Schunk (1981). Determining optical flow. Artificial Intell. 17: 185–203.

    Google Scholar 

  • Khellaf, A., A. Beghadi and H. Dupoisot (1991). Entropic contrast enhancement. IEE Trans. Med. Imaging 10: 589–592.

    Google Scholar 

  • Kwon, T.M. and M.E. Zervakis (1992). Design of regularization filters with linear neural networks (image restoration). In: IEEE Trans Syst., Man Cybern. 1: 416–421.

  • Kobayashi, H., T. Matsumoto, T. Yagi, and T. Shimmi (1991). A layered architecture for regularization vision chips. In: IEEE International Joint Conference on Neural Networks, IEEE, 2: 1007–1020.

  • Kobayashi, H., T. Matsumoto, T. Yagi and T. Shimmi (1993). Image processing regularization filters on layered architecture. Neural Networks 6: 327–350.

    Google Scholar 

  • Kobayashi, N., H. Saito and M. Nakajima (1994). Fast adaptive contrast enhancement method for the display of gray-tone images. Trans. IEICE 77: 502–509.

    Google Scholar 

  • Krishan, A. (1987). Effect of drug efflux blockers on vital staining of cellular DNA with Hoechst 33342. Cytometry 8: 642–645.

    Google Scholar 

  • Lalande, M.E., V. Ling and R.G. Miller (1981). Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc. Natl. Acad. Sci., USA 78: 363–367.

    Google Scholar 

  • Latt, S.A. and R.G. Langlois (1990). Fluorescent probes of DNA microstructure and DNA synthesis. In: M.R. Melamed, T. Lindmo and M.L. Mandelsohn, eds., Flow Cytometry and Sorting, 249–290. New York, Wiley-Liss, Inc.

    Google Scholar 

  • Laurent, P.J. (1972). Approximation et Optimisation. Paris, Hermann (ed.)

    Google Scholar 

  • Le Negrate, A., A. Beghadi and H. Dupoisot (1992). An image enhancement technique and its evaluation through bimodality analysis. CGVIP: Graph. Models Image Process 54: 13–22.

    Google Scholar 

  • Leitner, F. (1993). Segmentation dynamique d'images tridimensionnelles. INPG thesis.

  • Leitner, F., I. Marque, F. Berthommier, T. Coll, O. François, P. Cinquin and J. Demongeot (1991). Neural networks, differential systems and image processing. In: J.C. Simon, ed., From Pixels to Features II, 253–274. North Holland.

  • Martin, J.P. (1988). Fast enhancement technique for PC-based image processing systems. In: Electronic Imaging 88, Diagn. Imag. Mag. 1: 194–198.

  • Nakahira, H., M. Maruyama, H. Ueda and H. Yamada (1993). An image processing system using image signal multiprocessors (ISMPs). J. VLSI Signal Process. 5: 133–140.

    Google Scholar 

  • Neycenssac, F. (1993). Contrast enhancement using the Laplacian of a Gaussian filter. CVGIP: Graph. Models Image Process. 55: 447–463.

    Google Scholar 

  • Ning, F. and C. Ming Chieh (1993). An automatic cross-over point selection technique for image enhancement using fuzzy sets. Pattern Recognition Lett. 14: 397–406.

    Google Scholar 

  • Paillasson, S., G. Brugal and X. Ronot (1994). Marquage du noyau de cellules vivantes par le Hoechst 33342: un nouveau concept pour l'analyse dynamique du contenu en ADN. Innov. Technol. Biol. Med. 15: 583–594.

    Google Scholar 

  • Paillasson, S., F. Germain, P. Stelmaszyk and X. Ronot (1994). Dynamic analysis of cell motion: a new method based on dense vector field estimation. Anal. Cell. Pathol. 6: 201.

    Google Scholar 

  • Paillasson, S., J.M. Millot, M. Manfait and X. Ronot (1995). DNA analysis in living cells: cytometric approaches. In: G. Morel, ed., Visualization of Nucleic Acids. New York, CRC Press.

    Google Scholar 

  • Ritter, C. and A. Tanner-Martin (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. J. Amer. Statist. Assoc. 87: 861–868.

    Google Scholar 

  • Rougon, N. (1993). Eléments pour la reconnaissance de formes tridimensionnelles déformables. Application à l'imagerie biomédicale. ENST thesis.

  • Sablonnière, P. (1978). Spline and Bézier polygons associated with a polynomial spline curve. Computer Aided Design 10: 257–261.

    Google Scholar 

  • Sablonnière, P. and A. le Méhauté (1987). Courbes et surfaces. Bézier/B-splines, A.T.P. du CNRS.

  • Santisteban-Otegui, M.P. Montmasson, F. Giroud, X. Ronot and G. Brugal (1992). Fluorescence image cytometry of nuclear DNA content versus chromatin pattern: a comparative study of ten fluorochromes. J. Histochem; Cytochem. 40: 1789–1797.

    Google Scholar 

  • Shumaker, L.L. (1981). Spline Functions: Basic Theory. John Wiley & sons.

  • Taylor, D.L. and Y.L. Wang (1980). Fluorescent labelled molecules as probes of the structure and function of living cells. Nature 284: 405–410.

    Google Scholar 

  • Terzopoulos, D., M. Kass and A. Witkin (1987). Snakes: active contour models. Proc of ICCV: 259–268.

  • Toet, A. (1992). Multiscale contrast enhancement with applications to image fusion. Opt. Eng. 31: 1026–1031.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitner, F., Paillasson, S., Ronot, X. et al. Dynamic functional and structural analysis of living cells: New tools for vital staining of nuclear DNA and for characterisation of cell motion. Acta Biotheor 43, 299–317 (1995). https://doi.org/10.1007/BF00713555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713555

Key words

Navigation