Skip to main content
Log in

Physical and thermodynamic aspects of the glassy state, and intrinsic non-linear behaviour of creep and stress relaxation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rheology in the highly viscous liquid and the glassy state is reviewed and discussed. A distribution relaxation time due to the co-operative molecular motion is exhibited both in the highly viscous liquid and in the glassy states. However, only in the glassy state has the structure been frozen-in at some particular internal state resulting from the incomplete establishment of a thermodynamic equilibrium state. Therefore, the intrinsic non-linear rheological behaviour of the glassy state is explained from the physical and thermodynamic aspects in the glass transformation region. The volume relaxation of soda-lime-silica glass and the thermal history of glass during forming process have been studied. Finally, the role of rheology in thermal stress and fracture mechanics is also mentioned, which subsequently will allow us to re-evaluate the mechanisms of toughening and weakening of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Tammann, Der Glaszustand (Leipzig: Voss), (1933) 18.

    Google Scholar 

  2. R. O. Davies and G. O. Jones, Adv. Phys. 2 (1953) 370.

    Google Scholar 

  3. W. Kauzmann, Rev. Mod. Phys. 14 (1942) 12.

    Google Scholar 

  4. Idem, Chem. Rev. 43 (1948) 219.

    Google Scholar 

  5. P. Ehrenest, Proc. K. Akad. Wetensch 36 (1933) 153.

    Google Scholar 

  6. F. E. Simon, Z. Anorg. Chem. 203 (1931) 219.

    Google Scholar 

  7. T. A. Litovitz and C. M. Davis, “Physical Acoustics”, edited by W. P. Manson, Vol. IIA (Academic Press, New York, 1965) Ch. 5.

    Google Scholar 

  8. P. Macedo and T. A. Litovitz, Phys. Chem. Glass 6 (1965) 369.

    Google Scholar 

  9. J. Tauke, T. A. Litovitz and P. B. Macedo, J. Amer. Ceram. Soc. 51 (3) (1968) 159.

    Google Scholar 

  10. T. A. Litovitz and P. Macedo, “Physics of Non-Crystalline Solids” (North Holland, Amsterdam, 1964) p. 220.

    Google Scholar 

  11. P. B. Macedo, J. H. Simmons and W. Haller, Phys. Chem. Glass 9 (5) (1968) 156.

    Google Scholar 

  12. I. Prigogine and R. Defay, “Chemical Thermodynamics”, Translated by D. H. Everett (Wiley, New York, 1962) Ch. XIX.

    Google Scholar 

  13. H. S. -Y. Hsich, J. Amer. Ceram. Soc. 60 (1977) 485.

    Google Scholar 

  14. Idem, J. Mater. Sci. 13 (1978) 750.

    Google Scholar 

  15. G. E. McDuffie and T. A. Litovitz, J. Chem. Phys. 37 (1962) 1699.

    Google Scholar 

  16. M. Prod'homme, Rev. Int. Haut. Temp Refract. 12 (1975) 79.

    Google Scholar 

  17. J. DeBast and P. Gilard, Phys. Chem. Glasses 4 (4) (1963) 117.

    Google Scholar 

  18. B. Gross, “Mathematical structure of the Theory of the Viscoelasticity” (Hermann, Paris, 1953).

    Google Scholar 

  19. S. Spinner and A. Napolitano, J. Res. Nat. Bur. Stand. 70A (1966) 147.

    Google Scholar 

  20. R. D. Corsaro, Phys. Chem. Glasses 17 (1976) 13.

    Google Scholar 

  21. L. Boesch, A. Napolitano and P. B. Macedo, J. Amer. Ceram. Soc. 53 (1970) 148.

    Google Scholar 

  22. G. Goldbach and G. Rehage, Rheo. Acta 6 (1967) 30.

    Google Scholar 

  23. Idem, J. Polymer Sci. C 6 (1967) 2289.

    Google Scholar 

  24. G. Rehage and G. Goldbach, Bunsenges 70 (1966) 1144.

    Google Scholar 

  25. O. S. Narayanaswamy and R. Gardon, J. Amer. Ceram. Soc. 52 (1969) 554.

    Google Scholar 

  26. Yr. G. Korabel'nikov, Polymer Mechanics, Translated from Russian Original, 7 (4) July–August (1971) 589, Dec. 1973.

    Google Scholar 

  27. S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity”, 3rd edn. (McGraw-Hill, New York, 1970) p. 433.

    Google Scholar 

  28. R. Gardon and O. W. Narayanaswamy, J. Amer. Ceram. Soc. 53 (1970) 380.

    Google Scholar 

  29. E. H. Lee, T. G. Rogers and T. C. Woo, ibid. 48 (1965) 480.

    Google Scholar 

  30. F. F. Lange, “Composite Materials”, edited by L. J. Broutman, Vol. 5 (Academic Press, New York, 1974) p. 1.

    Google Scholar 

  31. Idem, “Fracture Mechanics of Ceramics”, edited by R. C. Brandt, D. P. H. Hasselman and F. F. Lange, Vol. 4 (Plenum, New York, 1978) pp. 799–819.

    Google Scholar 

  32. J. Selsin, J. Amer. Ceram. Soc. 44 (1961) 419.

    Google Scholar 

  33. W. D. Kingery, ibid. 40 (1957) 351.

    Google Scholar 

  34. M. A. Stett and R. M. Fulrath, ibid. 53 (1970) 5.

    Google Scholar 

  35. A. G. Evans, J. Mater. Sci. 9 (1974) 1145.

    Google Scholar 

  36. R. W. Davidge and T. J. Green, ibid. 3 (1968) 629.

    Google Scholar 

  37. R. J. Young and P. W. Beaumont, ibid. 12 (1977) 684.

    Google Scholar 

  38. A. Pavan and T. Ricco, ibid. 11 (1976) 1180.

    Google Scholar 

  39. D. B. Binns, “Science of Ceramics”, Vol. I, edited by G. H. Stewart (Academic Press, New York, 1962) p. 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsich, H.S.Y. Physical and thermodynamic aspects of the glassy state, and intrinsic non-linear behaviour of creep and stress relaxation. J Mater Sci 15, 1194–1206 (1980). https://doi.org/10.1007/BF00551809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551809

Keywords

Navigation